A Forest Attribute Mapping Framework: A Pilot Study in a Northern Boreal Forest, Northwest Territories, Canada

A methods framework is presented that utilizes field plots, airborne light detection and ranging (LiDAR), and spaceborne Geoscience Laser Altimeter System (GLAS) data to estimate forest attributes over a 20 Mha area in Northern Canada. The framework was implemented to scale up forest attribute models from field data to intersecting airborne LiDAR data, and then to GLAS footprints. GLAS data were sequentially filtered and submitted to the k-nearest neighbour (k-NN) imputation algorithm to yield regional estimates of stand height and crown closure at a 30 m resolution. Resulting outputs were assessed against independent airborne LiDAR data to evaluate regional estimates of stand height (mean difference = −1 m, RMSE = 5 m) and crown closure (mean difference = −5%, RMSE = 9%). Additional assessments were performed as a function of dominant vegetation type and ecoregion to further evaluate regional products. These attributes form the primary descriptive structure attributes that are typical of forest inventory mapping programs, and provide insight into how they can be derived in northern boreal regions where field information and physical access is often limited.

[1]  B. Koch,et al.  Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .

[2]  Piermaria Corona,et al.  Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems , 2008 .

[3]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[4]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[5]  Michael A. Lefsky,et al.  Validation of the ICEsat vegetation product using crown-area-weighted mean height derived using crown delineation with discrete return lidar data , 2008 .

[6]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[7]  Erxue Chen,et al.  Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data , 2014 .

[8]  Asghar Fallah,et al.  Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms , 2012 .

[9]  A. Hudak,et al.  A cross-comparison of field, spectral, and lidar estimates of forest canopy cover , 2009 .

[10]  M. Philip,et al.  Measuring Trees and Forests , 1994 .

[11]  Ross Nelson,et al.  Model effects on GLAS-based regional estimates of forest biomass and carbon , 2010 .

[12]  Nicholas C. Coops,et al.  Investigating the agreement between global canopy height maps and airborne Lidar derived height estimates over Canada , 2013 .

[13]  M. Lefsky,et al.  Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests , 2001 .

[14]  Piermaria Corona,et al.  Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys , 2009 .

[15]  A. Shvidenko,et al.  Boreal forest health and global change , 2015, Science.

[16]  Yoshiki Yamagata,et al.  Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan , 2013 .

[17]  E. Næsset,et al.  Optimizing the k-Nearest Neighbors technique for estimating forest aboveground biomass using airborne laser scanning data , 2015 .

[18]  Göran Ståhl,et al.  Estimating Quebec provincial forest resources using ICESat/GLAS , 2009 .

[19]  D. Coomes,et al.  Effects of size, competition and altitude on tree growth , 2007 .

[20]  Catherine Ottlé,et al.  Data Assimilation of Satellite Observations , 2016 .

[21]  StinsonG.,et al.  Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery , 2014 .

[22]  Daniel Fortin,et al.  Multi-level functional responses for wildlife conservation: the case of threatened caribou in managed boreal forests , 2012 .

[23]  Suming Jin,et al.  Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances , 2005 .

[24]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[25]  Continental Estimates of Canopy Gap Fraction by Active Remote Sensing , 2017 .

[26]  Barbara Koch,et al.  Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands , 2012 .

[27]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[28]  Ranga B. Myneni,et al.  Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks , 2003 .

[29]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[30]  N. Altman An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .

[31]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[32]  P. Treitz,et al.  Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density , 2006 .

[33]  Gherardo Chirici,et al.  A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data , 2016 .

[34]  M. Gillis,et al.  Monitoring Canada's forests: The National Forest Inventory , 2005 .

[35]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[36]  T. A. Black,et al.  A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior , 2013 .

[37]  Joanne C. White,et al.  Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada , 2016 .

[38]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[39]  C. Hopkinson,et al.  Scaling plot to stand-level lidar to province in a hierarchical approach to map forest biomass in Nova Scotia. , 2011 .

[40]  C. Hopkinson The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution , 2007 .

[41]  Klaus I. Itten,et al.  Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning , 2008 .

[42]  Oliver Sonnentag,et al.  Permafrost thaw and wildfire: Equally important drivers of boreal tree cover changes in the Taiga Plains, Canada , 2016 .

[43]  Sungho Choi,et al.  Application of Physically-Based Slope Correction for Maximum Forest Canopy Height Estimation Using Waveform Lidar across Different Footprint Sizes and Locations: Tests on LVIS and GLAS , 2014, Remote. Sens..

[44]  R. Hall,et al.  Remote sensing and forest inventory for wildlife habitat assessment , 2009 .

[45]  M. Winton,et al.  Amplified Arctic climate change: What does surface albedo feedback have to do with it? , 2006 .

[46]  Klaus Hechenbichler,et al.  Weighted k-Nearest-Neighbor Techniques and Ordinal Classification , 2004 .

[47]  Michael A. Lefsky,et al.  Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation measurements , 2011 .

[48]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[49]  M. Maltamo,et al.  Variable selection strategies for nearest neighbor imputation methods used in remote sensing based forest inventory , 2012 .

[50]  M. Nilsson,et al.  A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory , 2017 .

[51]  Guoqing Sun,et al.  Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR , 2013 .

[52]  Natascha Kljun,et al.  ICESat/GLAS Canopy Height Sensitivity Inferred from Airborne Lidar , 2016 .

[53]  David B. Lobell,et al.  Per-Pixel Analysis of Forest Structure , 2003 .

[54]  N. Coops,et al.  Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests , 2003 .

[55]  M. Flannigan,et al.  Forest Fires and Climate Change in the Northwest Territories , 2008 .

[56]  R. McRoberts,et al.  Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference , 2016 .

[57]  Håkan Olsson,et al.  Simulating the effects of lidar scanning angle for estimation of mean tree height and canopy closure , 2003 .

[58]  Conghe Song,et al.  Optical remote sensing of forest leaf area index and biomass , 2013 .

[59]  S. Franklin Remote Sensing for Biodiversity and Wildlife Management: Synthesis and Applications , 2009 .

[60]  Han Y. H. Chen,et al.  Height growth–elevation relationships in subalpine forests of interior British Columbia , 1996 .

[61]  G. Anderson,et al.  Error propagation by the Monte Carlo method in geochemical calculations , 1976 .

[62]  Richard A. Fournier,et al.  Moving Toward Consistent ALS Monitoring of Forest Attributes across Canada: A Consortium Approach , 2013 .

[63]  A. Hudak,et al.  Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .

[64]  D. Leckie,et al.  Forest inventory in Canada with emphasis on map production , 1995 .

[65]  R. Nelson,et al.  Estimating Siberian timber volume using MODIS and ICESat/GLAS. , 2009 .

[66]  Josef Cihlar,et al.  Net primary productivity mapped for Canada at 1-km resolution , 2002 .

[67]  R. McRoberts,et al.  Remote sensing support for national forest inventories , 2007 .

[68]  R. Nelson,et al.  Determining forest canopy characteristics using airborne laser data , 1984 .

[69]  Peter R. J. North,et al.  Vegetation height estimates for a mixed temperate forest using satellite laser altimetry , 2008 .

[70]  M. Rautiainen,et al.  Estimation of forest canopy cover: A comparison of field measurement techniques , 2006 .

[71]  Michal Podhoranyi,et al.  Modelling the Uncertainty of Slope Estimation from a Lidar-Derived Dem: a Case Study from a Large-Scale Area in the Czech Republic / Modelovanie Neistoty Vo Výpočte Sklonov Z Lidarových Dmr; Prípadová Štúdia Vybraného Malého Územia V Čr , 2013 .

[72]  H. Zwally,et al.  Derivation of Range and Range Distributions From Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights , 2012 .

[73]  Aerial photo-interpretation using Z/I DMC images for estimation of forest variables , 2007 .

[74]  John F. Ogilvie,et al.  A monte-carlo approach to error propagation , 1984, Comput. Chem..

[75]  N. Coops,et al.  Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR , 2007, Trees.

[76]  S. Garman,et al.  Comparison of five canopy cover estimation techniques in the western Oregon Cascades , 2006 .

[77]  Jacob Cohen Statistical Power Analysis , 1992 .

[78]  Qi Chen Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry , 2010 .

[79]  S. G. Nelson,et al.  Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape , 2008, Sensors.

[80]  W. Kurz,et al.  National level forest monitoring and modeling in Canada , 2004 .

[81]  J. Ray,et al.  Conservation of caribou ( Rangifer tarandus ) in Canada : an uncertain future 1 , 2011 .

[82]  Peter R. J. North,et al.  Slope Estimation from ICESat/GLAS , 2014, Remote. Sens..

[83]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[84]  Ronald E. McRoberts,et al.  The shelf-life of airborne laser scanning data for enhancing forest inventory inferences , 2018 .

[85]  Maurizio Santoro,et al.  Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band , 2012 .

[86]  Arnt Kristian Gjertsen,et al.  Accuracy of forest mapping based on Landsat TM data and a kNN-based method , 2007 .

[87]  Michael A. Wulder,et al.  Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR , 2013, Remote. Sens..

[88]  Ronald E. McRoberts,et al.  Diagnostic tools for nearest neighbors techniques when used with satellite imagery , 2009 .

[89]  Dirk Pflugmacher,et al.  Regional Applicability of Forest Height and Aboveground Biomass Models for the Geoscience Laser Altimeter System , 2008 .

[90]  Helen Amanda Fricker,et al.  The ICESat-2 Laser Altimetry Mission , 2010, Proceedings of the IEEE.

[91]  R. Hall,et al.  Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume , 2006 .

[92]  R. Samworth Optimal weighted nearest neighbour classifiers , 2011, 1101.5783.

[93]  Matti Maltamo,et al.  Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index , 2011 .

[94]  Daniel McInerney,et al.  A comparative analysis of kNN and decision tree methods for the Irish National Forest Inventory , 2009 .

[95]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[96]  Ronald E. McRoberts,et al.  Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique , 2002 .

[97]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[98]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[99]  André Beaudoin,et al.  Tracking forest attributes across Canada between 2001 and 2011 using a k nearest neighbors mapping approach applied to MODIS imagery , 2018 .

[100]  M. Gillis Canada's National Forest Inventory (Responding to Current Information Needs) , 2001, Environmental monitoring and assessment.

[101]  Nicholas C. Coops,et al.  Lidar plots — a new large-area data collection option: context, concepts, and case study , 2012 .

[102]  Douglas K. Bolton,et al.  Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar , 2013, Environmental Monitoring and Assessment.

[103]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[104]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[105]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[106]  Lijuan Liu,et al.  A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems , 2016, Int. J. Digit. Earth.

[107]  Terje Gobakken,et al.  Lidar sampling — Using an airborne profiler to estimate forest biomass in Hedmark County, Norway , 2012 .

[108]  J. Brandt The extent of the North American boreal zone , 2009 .

[109]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[110]  R. Hall The Roles of Aerial Photographs in Forestry Remote Sensing Image Analysis , 2003 .

[111]  Guoqing Sun,et al.  Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America1 , 2015 .

[112]  Joanne C. White,et al.  Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots , 2018 .

[113]  Ronald J. Hall,et al.  Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program , 2003 .

[114]  Paul E. Gessler,et al.  Modeling Soil–Landscape and Ecosystem Properties Using Terrain Attributes , 2000 .

[115]  H. Shugart,et al.  Remote sensing of boreal forest biophysical and inventory parameters: a review , 2007 .

[116]  P. Lemmon A Spherical Densiometer For Estimating Forest Overstory Density , 1956 .

[117]  A. Neuenschwander,et al.  Characterization of ICESat/GLAS waveforms over terrestrial ecosystems: Implications for vegetation mapping , 2008 .

[118]  Ottmar Edenhofer,et al.  Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[119]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .