Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model

Approximate Bayesian computation (ABC) refers to a family of inference methods used in the Bayesian analysis of complex models where evaluation of the likelihood is difficult. Conventional ABC methods often suffer from the curse of dimensionality, and a marginal adjustment strategy was recently introduced in the literature to improve the performance of ABC algorithms in high-dimensional problems. The marginal adjustment approach is extended using a Gaussian copula approximation. The method first estimates the bivariate posterior for each pair of parameters separately using a 2 -dimensional Gaussian copula, and then combines these estimates together to estimate the joint posterior. The approximation works well in large sample settings when the posterior is approximately normal, but also works well in many cases which are far from that situation due to the nonparametric estimation of the marginal posterior distributions. If each bivariate posterior distribution can be well estimated with a low-dimensional ABC analysis then this Gaussian copula method can extend ABC methods to problems of high dimension. The method also results in an analytic expression for the approximate posterior which is useful for many purposes such as approximation of the likelihood itself. This method is illustrated with several examples.

[1]  S. Sisson,et al.  Diagnostic tools for approximate Bayesian computation using the coverage property , 2013, 1301.3166.

[2]  David Allingham,et al.  Bayesian estimation of quantile distributions , 2009, Stat. Comput..

[3]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[4]  Brunero Liseo,et al.  Approximate Integrated Likelihood via ABC methods , 2014, 1403.0387.

[5]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[6]  J. Ibrahim,et al.  Power prior distributions for regression models , 2000 .

[7]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[8]  M. Beaumont,et al.  Likelihood-Free Inference of Population Structure and Local Adaptation in a Bayesian Hierarchical Model , 2010, Genetics.

[9]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[10]  D. J. Nott,et al.  Approximate Bayesian Computation and Bayes’ Linear Analysis: Toward High-Dimensional ABC , 2011, 1112.4755.

[11]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[12]  L. Tippett Statistical Tables: For Biological, Agricultural and Medical Research , 1954 .

[13]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[14]  Helen MacGillivray,et al.  Weighted quantile-based estimation for a class of transformation distributions , 2002 .

[15]  I. Ehrlich Participation in Illegitimate Activities: A Theoretical and Empirical Investigation , 1973, Journal of Political Economy.

[16]  J. Møller Discussion on the paper by Feranhead and Prangle , 2012 .

[17]  Theodore Kypraios,et al.  Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution , 2015, Stat. Comput..

[18]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[19]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[20]  Nicolas Chopin,et al.  Expectation Propagation for Likelihood-Free Inference , 2011, 1107.5959.

[21]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[22]  N. Michels,et al.  I. HISTORICAL DATA , 1963 .

[23]  D. Balding,et al.  Statistical Applications in Genetics and Molecular Biology On Optimal Selection of Summary Statistics for Approximate Bayesian Computation , 2011 .

[24]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[25]  R. A. Fisher,et al.  Statistical Tables for Biological, Agricultural and Medical Research , 1956 .

[26]  Gareth W. Peters,et al.  Bayesian Inference, Monte Carlo Sampling and Operational Risk. , 2006 .

[27]  John Lewis Bayesian Restricted Likelihood Methods , 2014 .

[28]  Anthony N. Pettitt,et al.  Likelihood-free Bayesian estimation of multivariate quantile distributions , 2011, Comput. Stat. Data Anal..

[29]  Joseph Fourier,et al.  Approximate Bayesian Computation: a non-parametric perspective , 2013 .

[30]  Robert Kohn,et al.  Nonparametric regression using linear combinations of basis functions , 2001, Stat. Comput..

[31]  Paul Fearnhead,et al.  Constructing Summary Statistics for Approximate Bayesian Computation: Semi-automatic ABC , 2010, 1004.1112.

[32]  H. Joe Multivariate models and dependence concepts , 1998 .

[33]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Nils Lid Hjort,et al.  Statistical Corrections of Invalid Correlation Matrices , 2013 .

[35]  Jean-Michel Marin,et al.  Likelihood-Free Model Choice , 2015, Handbook of Approximate Bayesian Computation.

[36]  C C Drovandi,et al.  Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.

[37]  Werner A. Stahel,et al.  Sharpening Wald-type inference in robust regression for small samples , 2011, Comput. Stat. Data Anal..