A hybrid convex variational model for image restoration
暂无分享,去创建一个
[1] L. Vese,et al. A Variational Method in Image Recovery , 1997 .
[2] T. Chan,et al. Edge-preserving and scale-dependent properties of total variation regularization , 2003 .
[3] R. Stollberger,et al. Nonlinear anisotropic diffusion filtering for multiscale edge enhancement , 2002 .
[4] Stephen L. Keeling,et al. Total variation based convex filters for medical imaging , 2003, Appl. Math. Comput..
[5] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[6] Satyanad Kichenassamy,et al. The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..
[7] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[8] J. Craggs. Applied Mathematical Sciences , 1973 .
[9] Andrew Blake,et al. Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.
[10] Yehoshua Y. Zeevi,et al. Estimation of optimal PDE-based denoising in the SNR sense , 2006, IEEE Transactions on Image Processing.
[11] Gjlles Aubert,et al. Mathematical problems in image processing , 2001 .
[12] K. Kunisch,et al. BV-type regularization methods for convoluted objects with edge, flat and grey scales , 2000 .
[13] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[14] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[15] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[16] Stephen L. Keeling,et al. Total variation denoising for improved diffusion tensor calculation. , 2000 .