A hybrid convex variational model for image restoration

We propose a new hybrid model for variational image restoration using an alternative diffusion switching non-quadratic function with a parameter. The parameter is chosen adaptively so as to minimize the smoothing near the edges and allow the diffusion to smooth away from the edges. This model belongs to a class of edge-preserving regularization methods proposed in the past, the @f-function formulation. This involves a minimizer to the associated energy functional. We study the existence and uniqueness of the energy functional of the model. Using real and synthetic images we show that the model is effective in image restoration.

[1]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[2]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[3]  R. Stollberger,et al.  Nonlinear anisotropic diffusion filtering for multiscale edge enhancement , 2002 .

[4]  Stephen L. Keeling,et al.  Total variation based convex filters for medical imaging , 2003, Appl. Math. Comput..

[5]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[6]  Satyanad Kichenassamy,et al.  The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..

[7]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[8]  J. Craggs Applied Mathematical Sciences , 1973 .

[9]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[10]  Yehoshua Y. Zeevi,et al.  Estimation of optimal PDE-based denoising in the SNR sense , 2006, IEEE Transactions on Image Processing.

[11]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[12]  K. Kunisch,et al.  BV-type regularization methods for convoluted objects with edge, flat and grey scales , 2000 .

[13]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[15]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[16]  Stephen L. Keeling,et al.  Total variation denoising for improved diffusion tensor calculation. , 2000 .