Aggregation-Diffusion Equations: Dynamics, Asymptotics, and Singular Limits

Given a large ensemble of interacting particles, driven by nonlocal interactions and localized repulsion, the mean-field limit leads to a class of nonlocal, nonlinear partial differential equations known as aggregation-diffusion equations. Over the past 15 years, aggregation-diffusion equations have become widespread in biological applications and have also attracted significant mathematical interest, due to their competing forces at different length scales. These competing forces lead to rich dynamics, including symmetrization, stabilization, and metastability, as well as sharp dichotomies separating well-posedness from finite time blow-up. In the present work, we review known analytical results for aggregation-diffusion equations and consider singular limits of these equations, including the slow diffusion limit, which leads to the constrained aggregation equation, and localized aggregation and vanishing diffusion limits, which lead to metastability behavior. We also review the range of numerical methods available for simulating solutions, with special attention devoted to recent advances in deterministic particle methods. We close by applying such a method—the blob method for diffusion—to showcase key properties of the dynamics of aggregation-diffusion equations and related singular limits.

[1]  Jean-David Benamou,et al.  An augmented Lagrangian approach to Wasserstein gradient flows and applications , 2016 .

[2]  Andrea L. Bertozzi,et al.  A blob method for the aggregation equation , 2014, Math. Comput..

[3]  N. Masmoudi,et al.  Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in R2 with Measure-valued Initial Data , 2012 .

[4]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[5]  J. Carrillo,et al.  Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics , 2016, Inventiones mathematicae.

[6]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[7]  E. Lieb,et al.  The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics , 1987 .

[8]  J. Carrillo,et al.  Dimensionality of Local Minimizers of the Interaction Energy , 2012, 1210.6795.

[9]  C. Patlak Random walk with persistence and external bias , 1953 .

[10]  Nicola Bellomo,et al.  Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues , 2015 .

[11]  E. Lieb,et al.  A `liquid-solid' phase transition in a simple model for swarming , 2016, 1607.07971.

[12]  Francis Filbet,et al.  A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..

[13]  Sylvia Serfaty,et al.  Gamma-convergence of gradient flows on Hilbert and metric spaces and applications , 2011 .

[14]  Maria E. Schonbek,et al.  Decay rates for a class of diffusive-dominated interaction equations , 2011, 1106.5880.

[15]  J. Carrillo,et al.  Ground states in the diffusion-dominated regime , 2017, Calculus of Variations and Partial Differential Equations.

[16]  Joep H. M. Evers,et al.  Metastable States for an Aggregation Model with Noise , 2016, SIAM J. Appl. Dyn. Syst..

[17]  C. Villani Topics in Optimal Transportation , 2003 .

[18]  Takasi Senba,et al.  Type II blowup of solutions to a simplified Keller–Segel system in two dimensional domains , 2007 .

[19]  Jingwei Hu,et al.  Fully Discrete Positivity-Preserving and Energy-Decaying Schemes for Aggregation-Diffusion Equations with a Gradient Flow Structure , 2018, 1811.11502.

[20]  M. Bodnar,et al.  An integro-differential equation arising as a limit of individual cell-based models , 2006 .

[21]  F. Quirós,et al.  Convergence of the porous media equation to Hele-Shaw , 2001 .

[22]  Gunnar Kaib,et al.  Stationary States of an Aggregation Equation with Degenerate Diffusion and Bounded Attractive Potential , 2016, SIAM J. Math. Anal..

[23]  Giovanni Russo,et al.  Deterministic diffusion of particles , 1990 .

[24]  Pierre Degond,et al.  A Deterministic Approximation of Diffusion Equations Using Particles , 1990, SIAM J. Sci. Comput..

[25]  José A. Carrillo,et al.  Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..

[26]  Rong Yang,et al.  A random particle blob method for the Keller-Segel equation and convergence analysis , 2016, Math. Comput..

[27]  Georges-Henri Cottet,et al.  Particle Methods for the One-Dimensional Vlasov–Poisson Equations , 1984 .

[28]  Alessio Figalli,et al.  Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller–Segel equation , 2011, 1107.5976.

[29]  Andrea L. Bertozzi,et al.  AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS , 2012 .

[30]  J. Carrillo,et al.  Existence of Compactly Supported Global Minimisers for the Interaction Energy , 2014, 1405.5428.

[31]  Li Chen,et al.  Exact criterion for global existence and blow up to a degenerate Keller-Segel system , 2013, Documenta Mathematica.

[32]  Sylvie Mas-Gallic THE DIFFUSION VELOCITY METHOD: A DETERMINISTIC WAY OF MOVING THE NODES FOR SOLVING DIFFUSION EQUATIONS , 2002 .

[33]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[34]  Felix Otto,et al.  Doubly Degenerate Diffusion Equations as Steepest Descent , 1996 .

[35]  Jacob Bedrossian,et al.  Global Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion , 2013, SIAM J. Math. Anal..

[36]  Gabriel Peyré,et al.  Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..

[37]  Eric Carlen,et al.  Functional inequalities, thick tails and asymptotics for the critical mass Patlak–Keller–Segel model , 2010, 1009.0134.

[38]  J. Carrillo,et al.  A blob method for diffusion , 2017, Calculus of Variations and Partial Differential Equations.

[39]  B. Perthame,et al.  A HELE-SHAW problem for tumor growth , 2015, 1512.06995.

[40]  Zheng Sun,et al.  A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials , 2017, J. Comput. Phys..

[41]  Michael Loss,et al.  Competing symmetries, the logarithmic HLS inequality and Onofri's inequality onsn , 1992 .

[42]  J. Carrillo,et al.  Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.

[43]  Inwon C. Kim,et al.  Congested Aggregation via Newtonian Interaction , 2016, 1603.03790.

[44]  J. Dolbeault,et al.  Asymptotic Estimates for the Parabolic-Elliptic Keller-Segel Model in the Plane , 2012, 1206.1963.

[45]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[46]  Katy Craig,et al.  Aggregation-diffusion to constrained interaction: Minimizers & gradient flows in the slow diffusion limit , 2018, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[47]  Martin Campos Pinto,et al.  Convergence of a linearly transformed particle method for aggregation equations , 2015, Numerische Mathematik.

[48]  J. Carrillo,et al.  Equilibria of homogeneous functionals in the fair-competition regime , 2016, 1610.00939.

[49]  M. D. Francesco,et al.  Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion , 2017, Kinetic & Related Models.

[50]  Jian-Guo Liu,et al.  Communications in Mathematical Physics Dynamic and Steady States for Multi-Dimensional Keller-Segel Model with Diffusion Exponent m > 0 , 2013 .

[51]  Yao Yao Asymptotic Behavior for Critical Patlak-Keller-Segel model and an Repulsive-Attractive Aggregation Equation , 2011, 1112.4617.

[52]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[53]  Pierre-Louis Lions,et al.  Une méthode particulaire déterministe pour des équations diffusives non linéaires , 2001 .

[54]  B. Perthame,et al.  The Hele–Shaw Asymptotics for Mechanical Models of Tumor Growth , 2013, Archive for Rational Mechanics and Analysis.

[55]  J. Carrillo,et al.  Geometry of minimizers for the interaction energy with mildly repulsive potentials , 2016, 1607.08660.

[56]  Andrea Bertozzi,et al.  Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion , 2010, 1009.2674.

[57]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[58]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[59]  J. A. Carrillo,et al.  Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms , 2009, SIAM J. Sci. Comput..

[60]  Li Chen,et al.  Multidimensional Degenerate Keller-Segel System with Critical Diffusion Exponent 2n/(n+2) , 2012, SIAM J. Math. Anal..

[61]  Pierre-Emmanuel Jabin,et al.  Mean Field Limit for Stochastic Particle Systems , 2017 .

[62]  Laurent Gosse,et al.  Lagrangian Numerical Approximations to One-Dimensional Convolution-Diffusion Equations , 2006, SIAM J. Sci. Comput..

[63]  P. Sternberg,et al.  Convergence of a Particle Method for Diffusive Gradient Flows in One Dimension , 2016, SIAM J. Math. Anal..

[64]  Takashi Suzuki,et al.  Weak Solutions to a Parabolic-Elliptic System of Chemotaxis , 2002 .

[65]  Quentin Mérigot,et al.  Discretization of functionals involving the Monge–Ampère operator , 2014, Numerische Mathematik.

[66]  Katy Craig,et al.  Convergence of Regularized Nonlocal Interaction Energies , 2015, SIAM J. Math. Anal..

[67]  Nicolas Vauchelet,et al.  Derivation of a Hele-Shaw type system from a cell model with active motion , 2014, 1401.2816.

[68]  C. Muratov,et al.  An Old Problem Resurfaces Nonlocally: Gamow's Liquid Drops Inspire Today's Research and Applications , 2017 .

[69]  Yao Yao,et al.  The Patlak-Keller-Segel Model and Its Variations: Properties of Solutions via Maximum Principle , 2011, SIAM J. Math. Anal..

[70]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[71]  N. Masmoudi,et al.  Existence, Uniqueness and Lipschitz Dependence for Patlak–Keller–Segel and Navier–Stokes in $${\mathbb{R}^2}$$R2 with Measure-Valued Initial Data , 2012, 1205.1551.

[72]  J. A. Carrillo,et al.  The derivation of swarming models: Mean-field limit and Wasserstein distances , 2013, 1304.5776.

[73]  Marie-Therese Wolfram,et al.  Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms , 2016, J. Comput. Phys..

[74]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[75]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[76]  Katy Craig Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions , 2015, 1512.07255.

[77]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[78]  J. Carrillo,et al.  The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime , 2016, 1612.08225.

[79]  Bertrand Maury,et al.  Handling congestion in crowd motion modeling , 2011, Networks Heterog. Media.

[80]  Michael Westdickenberg,et al.  VARIATIONAL PARTICLE SCHEMES FOR THE POROUS MEDIUM EQUATION AND FOR THE SYSTEM OF ISENTROPIC EULER EQUATIONS , 2008, 0807.3573.

[81]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[82]  J. Carrillo,et al.  Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems , 2014, 1406.4040.

[83]  D. Aronson The porous medium equation , 1986 .

[84]  Martin Burger,et al.  Stationary States and Asymptotic Behavior of Aggregation Models with Nonlinear Local Repulsion , 2013, SIAM J. Appl. Dyn. Syst..

[85]  R. Choksi,et al.  Nonlocal Shape Optimization via Interactions of Attractive and Repulsive Potentials , 2015, 1512.07282.

[86]  Jacob Bedrossian,et al.  Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion , 2010, Appl. Math. Lett..

[87]  L. Caffarelli,et al.  Asymptotic behavior of solutions of ut=Δum as m→∞ , 1987 .

[88]  Inwon C. Kim,et al.  Porous medium equation to Hele-Shaw flow with general initial density , 2015, 1509.06287.

[89]  G. Gie,et al.  The aggregation equation with Newtonian potential: The vanishing viscosity limit , 2017 .

[90]  F. Santambrogio,et al.  A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.

[91]  Andrea L. Bertozzi,et al.  Blow-up dynamics for the aggregation equation with degenerate diffusion , 2013 .

[92]  Jean Dolbeault,et al.  Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model , 2008, 0812.4876.

[93]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[94]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[95]  P. Raphaël,et al.  On the stability of critical chemotactic aggregation , 2012, 1209.2517.

[96]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[97]  J. Carrillo,et al.  A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure , 2014, 1402.4252.

[98]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[99]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[100]  Jian-Guo Liu,et al.  Error estimate of a random particle blob method for the Keller-Segel equation , 2017, Math. Comput..

[101]  José A. Carrillo,et al.  Ground States for Diffusion Dominated Free Energies with Logarithmic Interaction , 2014, SIAM J. Math. Anal..

[102]  J. Bedrossian Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models , 2010, 1009.6187.

[103]  Li Wang,et al.  Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations , 2016, Math. Comput..

[104]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[105]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[106]  Andrew J. Majda,et al.  Vortex Methods. I: Convergence in Three Dimensions , 2010 .

[107]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[108]  M. Burger,et al.  Stationary states of quadratic diffusion equations with long-range attraction , 2011, 1103.5365.

[109]  Y. Sugiyama Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis , 2007, Differential and Integral Equations.

[110]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[111]  J. Carrillo,et al.  Uniform in Time L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }$\end{document}-Estimates for Nonlinear Ag , 2017, Acta Applicandae Mathematicae.

[112]  N. Masmoudi,et al.  Stability of infinite time blow up for the Patlak Keller Segel system , 2016, 1610.00456.

[113]  J. Carrillo,et al.  Existence of ground states for aggregation-diffusion equations , 2018, Analysis and Applications.

[114]  Inwon C. Kim,et al.  Quasi-static evolution and congested crowd transport , 2013, 1304.3072.

[115]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[116]  J. Carrillo,et al.  Numerical Study of a Particle Method for Gradient Flows , 2015, 1512.03029.

[117]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[118]  Pierre-Emmanuel Jabin,et al.  Mean Field Limit and Propagation of Chaos for Vlasov Systems with Bounded Forces , 2015, 1511.03769.

[119]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[120]  Giovanni Russo,et al.  A particle method for collisional kinetic equations. I. Basic theory and one-dimensional results , 1990 .

[121]  Karl Oelschläger,et al.  Large systems of interacting particles and the porous medium equation , 1990 .

[122]  Andrea L. Bertozzi,et al.  Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations , 2012, SIAM J. Math. Anal..

[123]  Luis Almeida,et al.  Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations , 2018, Networks Heterog. Media.

[124]  J. Bedrossian,et al.  Inhomogeneous Patlak-Keller-Segel models and Aggregation Equations with Nonlinear Diffusion in $\Real^d$ , 2011, 1108.5167.

[125]  Inwon C. Kim,et al.  Singular limit of the porous medium equation with a drift , 2017, Advances in Mathematics.

[126]  Gabriel Peyré,et al.  Convergence of Entropic Schemes for Optimal Transport and Gradient Flows , 2015, SIAM J. Math. Anal..

[127]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[128]  L. C. Evans,et al.  Diffeomorphisms and Nonlinear Heat Flows , 2005, SIAM Journal on Mathematical Analysis.

[129]  A. Majda,et al.  Vortex methods. II. Higher order accuracy in two and three dimensions , 1982 .

[130]  S. Mas-Gallic,et al.  Presentation and analysis of a diffusion-velocity method , 1999 .

[131]  Y. Zhang On a class of diffusion-aggregation equations , 2018, Discrete & Continuous Dynamical Systems - A.

[132]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[133]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[134]  Young-Pil Choi,et al.  Mean-field limit for collective behavior models with sharp sensitivity regions , 2015, Journal of the European Mathematical Society.

[135]  F. Quirós,et al.  Boundary layer formation in the transition from the porous media equation to a hele-shaw flow , 2003 .

[136]  R. Fetecau,et al.  Emergent behaviour in multi-particle systems with non-local interactions , 2013 .

[137]  Pierre-Emmanuel Jabin,et al.  A review of the mean field limits for Vlasov equations , 2014 .

[138]  V. Calvez,et al.  Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up , 2014, 1404.0139.

[139]  S. Mischler,et al.  Uniqueness and Long Time Asymptotic for the Keller–Segel Equation: The Parabolic–Elliptic Case , 2013, 1310.7771.

[140]  E. Carlen,et al.  Contraction of the proximal map and generalized convexity of the Moreau-Yosida regularization in the 2-Wasserstein metric , 2012, 1205.6565.

[141]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[142]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[143]  Thomas Y. Hou,et al.  Convergence of the point vortex method for the 2-D euler equations , 1990 .