Voltage-controlled domain wall traps in ferromagnetic nanowires.

Electrical control of magnetism has the potential to bring about revolutionary new spintronic devices, many of which rely on efficient manipulation of magnetic domain walls in ferromagnetic nanowires. Recently, it has been shown that voltage-induced charge accumulation at a metal-oxide interface can influence domain wall motion in ultrathin metallic ferromagnets, but the effects have been relatively modest and limited to the slow, thermally activated regime. Here we show that a voltage can generate non-volatile switching of magnetic properties at the nanoscale by modulating interfacial chemistry rather than charge density. Using a solid-state ionic conductor as a gate dielectric, we generate unprecedentedly strong voltage-controlled domain wall traps that function as non-volatile, electrically programmable and switchable pinning sites. Pinning strengths of at least 650 Oe can be readily achieved, enough to bring to a standstill domain walls travelling at speeds of at least ~20 m s(-1). We exploit this new magneto-ionic effect to demonstrate a prototype non-volatile memory device in which voltage-controlled domain wall traps facilitate electrical bit selection in a magnetic nanowire register.

[1]  Frank E. Osterloh,et al.  Heterogeneous Photocatalysis , 2021 .

[2]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[3]  M. Mogensen,et al.  Kinetic and geometric aspects of solid oxide fuel cell electrodes , 1996 .

[4]  T. D. Dzhafarov Photostimulated Diffusion in Semiconductors , 1983, Septemmber 16.

[5]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[6]  S. van Dijken,et al.  Pattern Transfer and Electric‐Field‐Induced Magnetic Domain Formation in Multiferroic Heterostructures , 2011, Advanced materials.

[7]  S. Ramanathan,et al.  Photon-assisted oxidation and oxide thin film synthesis: A review , 2009 .

[8]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[9]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[10]  Bernard Rodmacq,et al.  X-ray analysis of the magnetic influence of oxygen in Pt/Co/AlOx trilayers , 2008 .

[11]  Weisheng Zhao,et al.  Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures , 2013, Nature Communications.

[12]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[13]  Wei-gang Wang,et al.  Electric-field-assisted switching in magnetic tunnel junctions. , 2012, Nature materials.

[14]  G. Carman,et al.  Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film , 2008 .

[15]  Uwe Bauer,et al.  Electric field control of domain wall propagation in Pt/Co/GdOx films , 2012 .

[16]  D. Allwood,et al.  Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems , 2011 .

[17]  Bernard Rodmacq,et al.  Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers , 2008 .

[18]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[19]  Yoichi Shiota,et al.  Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. , 2011, Nature materials.

[20]  Hideo Ohno,et al.  Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures , 2010 .

[21]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[22]  G. Beach,et al.  Interfacial current induced torques in Pt|Co|GdOx , 2012, 1206.2561.

[23]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[24]  Sebastiaan van Dijken,et al.  Electric-field control of magnetic domain wall motion and local magnetization reversal , 2011, Scientific Reports.

[25]  Robert W. Balluffi,et al.  Kinetics of Materials: Balluffi/Kinetics , 2005 .

[26]  A. Marty,et al.  Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets , 2007, Science.

[27]  L. Gauckler,et al.  Thin films for micro solid oxide fuel cells , 2007 .

[28]  J. H. Franken,et al.  Electric-field control of domain wall motion in perpendicularly magnetized materials , 2012, Nature Communications.

[29]  S. Fukami,et al.  Electrical control of the ferromagnetic phase transition in cobalt at room temperature. , 2011, Nature materials.

[30]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[31]  J. Maier,et al.  Optically Tuning the Rate of Stoichiometry Changes: Surface-Controlled Oxygen Incorporation into Oxides under UV Irradiation. , 2001, Angewandte Chemie.

[32]  Voltage-gated modulation of domain wall creep dynamics in an ultrathin metallic ferromagnet , 2012, 1207.2996.

[33]  Aiping Zhang,et al.  Visible-light activities of Gd2O3/BiVO4 composite photocatalysts , 2010 .

[34]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[35]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[36]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[37]  T. Kauerauf,et al.  Physical analysis of breakdown in high-κ/metal gate stacks using TEM/EELS and STM for reliability enhancement (invited) , 2011 .

[38]  J. Maier,et al.  Oxygen incorporation into Fe-doped SrTiO3: Mechanistic interpretation of the surface reaction , 2002 .

[39]  Ahila Krishnamoorthy,et al.  Effect of ramp rate on dielectric breakdown in CU-SiOC interconnects , 2004 .

[40]  S. Fukami,et al.  Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization , 2012, Nature Communications.

[41]  H. Habermeier,et al.  The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia , 2002 .

[42]  G. Beach,et al.  Magnetoelectric charge trap memory. , 2012, Nano letters.

[43]  G. Dalpian,et al.  Photoinduced cation interstitial diffusion in II-VI semiconductors , 2005 .

[44]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.