ON Large sets of t-designs

Preface The method of partitionable sets for constructing large sets of t-designs have now been used for nearly a decade. The method has resulted in some powerful recursive constructions and also existence results especially for large sets of prime sizes. Perhaps the main feature of the approach is its simplicity. In these notes, we describe the method and show how it is employed to obtain large sets. We will present almost all of the existence results and recursive constructions which have been found by this method.

[1]  Luc Teirlinck Non-trivial t-designs without repeated blocks exist for all t , 1987, Discret. Math..

[2]  Behruz Tayfeh-Rezaie Some Infinite Families of Large Sets of t-Designs , 1999, J. Comb. Theory, Ser. A.

[3]  S. Ajoodani-Namini,et al.  Extending Large Sets of t-Designs , 1996, J. Comb. Theory, Ser. A.

[4]  Arthur Cayley,et al.  The Collected Mathematical Papers: On the Triadic Arrangements of Seven and Fifteen Things , 1850 .

[5]  Donald L. Kreher,et al.  Large sets of 3‐designs from psl(2, q), with block sizes 4 and 5 , 1995 .

[6]  Spyros S. Magliveras,et al.  Some new large sets of t-designs , 1993, Australas. J Comb..

[7]  Shmuel Schreiber,et al.  Some balanced complete block designs , 1974 .

[8]  B. Tayfeh-Rezaie,et al.  Backtracking algorithm for finding t‐designs , 2003 .

[9]  Donald L. Kreher,et al.  The existence of simple 6-(14, 7, 4) designs , 1986, J. Comb. Theory, Ser. A.

[10]  Dale M. Mesner,et al.  T-designs on Hypergraphs , 1976, Discret. Math..

[11]  Reinhard Laue,et al.  Halvings on small point sets , 1999 .

[12]  Alan Hartman,et al.  Towards a Large Set of Steiner Quadruple Systems , 1991, SIAM J. Discret. Math..

[13]  Shiro Iwasaki Infinite families of 2- and 3-designs with parameters v = p + 1, k = (p ? 1)/2i + 1, where p odd prime, 2e T (p ? 1), e ? 2, 1 ? i ? e , 1997 .

[14]  Shmuel Schreiber Covering All Triples on n Marks by Disjoint Steiner Systems , 1973, J. Comb. Theory, Ser. A.

[15]  Yeow Meng Chee,et al.  A few more large sets oft-designs , 1998 .

[16]  Luc Teirlinck,et al.  On the maximum number of disjoint triple systems , 1975 .

[17]  Douglas R. Stinson,et al.  A Combinatorial Approach to Threshold Schemes , 1987, SIAM J. Discret. Math..

[18]  Richard M. Wilson,et al.  On $t$-designs , 1975 .

[19]  Jia-Xi Lu On Large Sets of Disjoint Steiner Triple Systems I , 1983, J. Comb. Theory, Ser. A.

[20]  Anne Penfold Street,et al.  Partitioning sets of quadruples into designs I , 1989, Discret. Math..

[21]  Bernd Schmalz,et al.  The t-designs with prescribed automorphism group, new simple 6-designs , 1993 .

[22]  Gholamreza B. Khosrovshahi,et al.  More on halving the complete designs , 1994, Discret. Math..

[23]  Alan Hartman,et al.  Halving the Complete Design , 1987 .

[24]  William O. Alltop Extending t-Designs , 1975, J. Comb. Theory, Ser. A.

[25]  Reinhard Laue,et al.  New large sets of t-designs , 2001 .

[26]  Gholamreza B. Khosrovshahi,et al.  On halvings of the 2-(10,3,8) design , 2000 .

[27]  Charles J. Colbourn,et al.  Large sets of disjoint t-designs , 1990, Australas. J Comb..

[28]  Jia-Xi Lu,et al.  On Large Sets of Disjoint Steiner Triple Systems II , 1983, J. Comb. Theory, Ser. A.

[29]  Luc Teirlinck,et al.  Locally trivial t-designs and t-designs without repeated blocks , 1989, Discret. Math..

[30]  Luc Teirlinck On the maximum number of disjoint Steiner triple systems , 1973, Discret. Math..

[31]  Gholamreza B. Khosrovshahi,et al.  Root cases of large sets of t-designs , 2003, Discret. Math..

[32]  Behruz Tayfeh-Rezaie On the Existence of Large Sets of t-designs of Prime Sizes , 2005, Des. Codes Cryptogr..

[33]  Leo G. Chouinard,et al.  Partitions of the 4-subsets of a 13-set into disjoint projective planes , 1983, Discret. Math..

[34]  D. R. Hughes,et al.  On t-Designs and Groups , 1965 .

[35]  Dale M. Mesner,et al.  Intersections Among Steiner Systems , 1974, J. Comb. Theory, Ser. A.

[36]  Douglas R. Stinson,et al.  Some small large sets of t-designs , 1991, Australas. J Comb..