Integer linear programming formulations for double roman domination problem

For a graph $G= (V,E)$, a double Roman dominating function (DRDF) is a function $f : V \to \{0,1,2,3\}$ having the property that if $f (v) = 0$, then vertex $v$ must have at least two neighbors assigned $2$ under $f$ or {at least} one neighbor $u$ with $f (u) = 3$, and if $f (v) = 1$, then vertex $v$ must have at least one neighbor $u$ with $f (u) \ge 2$. In this paper, we consider the double Roman domination problem, which is an optimization problem of finding the DRDF $f$ such that $\sum_{v\in V} f (v)$ is minimum. We propose {five integer linear programming (ILP) formulations and one mixed integer linear programming formulation with polynomial number of constraints for this problem. Some additional valid inequalities and bounds are also proposed for some of these formulations.} Further, we prove that {the first four models indeed solve the double Roman domination problem, and the last two models} are equivalent to the others regardless of the variable relaxation or usage of a smaller number of constraints and variables. Additionally, we use one ILP formulation to give an $H(2(\Delta+1))$-approximation algorithm. All proposed formulations and approximation algorithm are evaluated on randomly generated graphs to compare the performance.

[1]  Gregory Dobson,et al.  Worst-Case Analysis of Greedy Heuristics for Integer Programming with Nonnegative Data , 1982, Math. Oper. Res..

[2]  Vaduvur Bharghavan,et al.  Routing in ad-hoc networks using minimum connected dominating sets , 1997, Proceedings of ICC'97 - International Conference on Communications.

[3]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[4]  I. Stewart Defend the Roman Empire , 1999 .

[5]  Charles S. Revelle,et al.  Defendens Imperium Romanum: A Classical Problem in Military Strategy , 2000, Am. Math. Mon..

[6]  Paul A. Dreyer APPLICATIONS AND VARIATIONS OF DOMINATION IN GRAPHS , 2000 .

[7]  Stephen T. Hedetniemi,et al.  Roman domination in graphs , 2004, Discret. Math..

[8]  W. Art Chaovalitwongse,et al.  Set covering approach for reconstruction of sibling relationships , 2007, Optim. Methods Softw..

[9]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[10]  Miroslav Chlebík,et al.  Approximation hardness of dominating set problems in bounded degree graphs , 2008, Inf. Comput..

[11]  Seyed Mahmoud Sheikholeslami,et al.  Bounds on roman domination numbers of graphs , 2008 .

[12]  Chefi Triki,et al.  Optimal routing and resource allocation in multi-hop wireless networks , 2008, Optim. Methods Softw..

[13]  Erin W. Chambers,et al.  Extremal Problems for Roman Domination , 2009, SIAM J. Discret. Math..

[14]  Michael A. Henning,et al.  A survey of selected recent results on total domination in graphs , 2009, Discret. Math..

[15]  Vahid Tarokh,et al.  A survey of error-correcting codes for channels with symbol synchronization errors , 2010, IEEE Communications Surveys & Tutorials.

[16]  Takahiro Hara,et al.  Wireless Sensor Network Technologies for the Information Explosion Era , 2012, Wireless Sensor Network Technologies for the Information Explosion Era.

[17]  Pedro Furtado,et al.  Survey on Data Routing in Wireless Sensor Networks , 2010, Wireless Sensor Network Technologies for the Information Explosion Era.

[18]  Wayne Goddard,et al.  Independent domination in graphs: A survey and recent results , 2013, Discret. Math..

[19]  Teresa W. Haynes,et al.  Roman {2}-domination , 2016, Discret. Appl. Math..

[20]  Vladimir Samodivkin,et al.  On maximal Roman domination in graphs , 2016, Int. J. Comput. Math..

[21]  Marija Ivanovic Improved mixed integer linear programing formulations for roman domination problem , 2016 .

[22]  Teresa W. Haynes,et al.  Double Roman domination , 2016, Discret. Appl. Math..

[23]  Mustafa Kemal Tural Maximal matching polytope in trees , 2016, Optim. Methods Softw..

[24]  Guoliang Hao,et al.  Double Roman Domination in Digraphs , 2019 .

[25]  Lutz Volkmann,et al.  Maximal Roman domination numbers in graphs , 2017 .

[26]  Nader Jafari Rad,et al.  Some notes on the Roman domination number and Italian domination number in graphs , 2017 .

[27]  Teresa W. Haynes,et al.  Mixed Roman Domination in Graphs , 2017 .

[28]  Seyed Mahmoud Sheikholeslami,et al.  On the double Roman domination in graphs , 2017, Discret. Appl. Math..

[29]  Min Li,et al.  On the double Roman domination of graphs , 2018, Appl. Math. Comput..

[30]  Zehui Shao,et al.  The Double Roman Domination Numbers of Generalized Petersen Graphs P(n, 2) , 2018, Mathematics.

[31]  Zehui Shao,et al.  Double Roman domination in trees , 2018, Inf. Process. Lett..

[32]  Seyed Mahmoud Sheikholeslami,et al.  An upper bound on the double Roman domination number , 2018, J. Comb. Optim..

[33]  L. Volkmann Double Roman domination and domatic numbers of graphs , 2018 .

[34]  Double Roman domination number , 2018, Discrete Applied Mathematics.

[35]  S. Aparna Lakshmanan,et al.  Double Roman domination number , 2018, Discret. Appl. Math..

[36]  S. M. Sheikholeslami,et al.  Trees with Double Roman Domination Number Twice the Domination Number Plus Two , 2019 .

[37]  Shunyu Yao,et al.  Integer linear programming models for the weighted total domination problem , 2019, Appl. Math. Comput..

[38]  Nader Jafari Rad,et al.  Some Progress on the Double Roman Domination in Graphs , 2019, Discuss. Math. Graph Theory.

[39]  J. L. Romero,et al.  A new method to obtain either first- or second-order reductions for parametric polynomial ODEs , 2019, J. Comput. Appl. Math..