Poisson–Lie T-Duality¶for Quasitriangular Lie Bialgebras

[1]  S. Majid,et al.  Twisting of Quantum Differentials and¶the Planck Scale Hopf Algebra , 1998, math/9811054.

[2]  V. Varadarajan,et al.  Su (2) Poisson–Lie T Duality , 1998, hep-th/9803175.

[3]  K. Sfetsos Poisson-Lie T-Duality beyond the classical level and the renormalization group , 1998, hep-th/9803019.

[4]  K. Sfetsos Canonical equivalence of non-isometric σ-models and Poisson-Lie T-duality , 1997, hep-th/9710163.

[5]  S. Parkhomenko MIRROR SYMMETRY AS A POISSON-LIE T-DUALITY , 1997 .

[6]  S. Majid,et al.  Quantum and braided group Riemannian geometry , 1997, q-alg/9709025.

[7]  S. Majid BRAIDED LIE BIALGEBRAS , 1997, q-alg/9703004.

[8]  E. Beggs,et al.  Quasitriangular and Differential Structures on Bicrossproduct Hopf Algebras , 1997, q-alg/9701041.

[9]  C. Klimčík,et al.  Poisson-Lie T-duality and loop groups of Drinfeld doubles , 1995, hep-th/9512040.

[10]  S. Majid Foundations of Quantum Group Theory , 1995 .

[11]  A. Alekseev,et al.  Quantum Poisson-Lie T-duality and WZNW model , 1995, hep-th/9509123.

[12]  C. Klimčík Poisson-Lie T-duality , 1995, hep-th/9509095.

[13]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[14]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[15]  A. Tseytlin Duality symmetric closed string theory and interacting chiral scalars , 1991 .

[16]  Shahn Majid,et al.  Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction , 1990 .

[17]  Shahn Majid,et al.  MATCHED PAIRS OF LIE GROUPS ASSOCIATED TO SOLUTIONS OF THE YANG-BAXTER EQUATIONS , 1990 .

[18]  S. Majid Hopf Algebras for Physics at the Planck Scale , 1988 .

[19]  S. Majid Non-commutative-geometric groups by a bicrossproduct construction : Hopf algebras at the Planck scaele , 1988 .

[20]  M. Semenov-Tian-Shansky Dressing transformations and Poisson group actions , 1985 .

[21]  M. A. Semenov-Tyan-Shanskii What is a classical r-matrix? , 1983 .

[22]  V. Drinfeld Hamiltonian structures of lie groups, lie bialgebras and the geometric meaning of the classical Yang-Baxter equations , 1983 .