Variable coefficient fractional‐order PID controller and its application to a SEPIC device

The fractional-order proportional–integral–derivative (FOPID) controller has two more parameters than the integer-order proportional–integral–derivative (PID). Such characteristic makes the controller design more flexible and leads to superior performance. This study proposes a variable coefficient FOPID (VCFOPID) with optimal single step parameters, combining discrete synthesis and variable control parameters. The new algorithm is compared with previous FOPID discrete methods via several examples. Since the energy losses of the single-ended primary-inductor converter (SEPIC) cannot be ignored, the standard models are insufficient and a new model is derived using quantum-behaved particle swarm optimisation. The VCFOPID is applied to the SEPIC and both the effectiveness of the controller and the model are verified experimentally.

[1]  Ahmed S. Elwakil,et al.  Field programmable analogue array implementation of fractional step filters , 2010, IET Circuits Devices Syst..

[2]  Paulo Moura Oliveira,et al.  Particle swarm optimization with fractional-order velocity , 2010 .

[3]  Liping Chen,et al.  Pinning synchronization of fractional-order delayed complex networks with non-delayed and delayed couplings , 2017, Int. J. Control.

[4]  Hirosato Nomura,et al.  Parameters identification of chaotic systems by quantum-behaved particle swarm optimization , 2009, Int. J. Comput. Math..

[5]  Jianpeng Zhong,et al.  Tuning Fractional-Order ${PI}^{\lambda } {D} ^{\mu }$ Controllers for a Solid-Core Magnetic Bearing System , 2015, IEEE Transactions on Control Systems Technology.

[6]  José António Tenreiro Machado,et al.  The effect of fractional order in variable structure control , 2012, Comput. Math. Appl..

[7]  Luis Angel,et al.  Factorial design for robustness evaluation of fractional PID controllers , 2015, IEEE Latin America Transactions.

[8]  L. Angel,et al.  Design and statistical robustness analysis of FOPID, IOPID and SIMC PID controllers applied to a motor-generator system , 2015, IEEE Latin America Transactions.

[9]  I. S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[10]  A. Oustaloup,et al.  Numerical Simulations of Fractional Systems: An Overview of Existing Methods and Improvements , 2004 .

[11]  Farshad Merrikh-Bayat,et al.  Discrete-time fractional-order PID controller: Definition, tuning, digital realization and some applications , 2014, International Journal of Control, Automation and Systems.

[12]  Luis Angel,et al.  Identification, control and robustness analysis of a robotic system using fractional control , 2015, IEEE Latin America Transactions.

[13]  J. A. Tenreiro Machado,et al.  Approximating fractional derivatives through the generalized mean , 2009 .

[14]  José M. Sebastián,et al.  Design and robust performance evaluation of a fractional order PID controller applied to a DC motor , 2017, IEEE/CAA Journal of Automatica Sinica.

[15]  J Ljubisa Bucanovic,et al.  The fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process , 2014 .

[16]  P. Balasubramaniam,et al.  Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system , 2015 .

[17]  Orlando Beytia,et al.  Conical Tank Level Control with Fractional PID , 2016, IEEE Latin America Transactions.

[18]  J. Machado Optimal tuning of fractional controllers using genetic algorithms , 2010 .

[19]  Ali Akbar Gharaveisi,et al.  Application of fractional order iterative learning controller for a type of batch bioreactor , 2016 .

[20]  Zhu Xin-jian,et al.  Digital implementation of fractional order PID controller and its application , 2005 .

[21]  Ming-Ji Yang,et al.  Model Reference Adaptive Control Design for a Shunt Active Power Filter System , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[22]  Xiaozhong Liao,et al.  Improved Oustaloup approximation of fractional-order operators using adaptive chaotic particle swarm optimization , 2012 .

[23]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[24]  S. N. Omkar,et al.  Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures , 2009, Expert Syst. Appl..

[25]  Yoichi Hori,et al.  Model Reference Adaptive Controller-Based Rotor Resistance and Speed Estimation Techniques for Vector Controlled Induction Motor Drive Utilizing Reactive Power , 2008, IEEE Transactions on Industrial Electronics.

[26]  Xiaozhong Liao,et al.  Discretization algorithm for fractional order integral by Haar wavelet approximation , 2011, Appl. Math. Comput..

[27]  Guanghui Sun,et al.  Discrete-Time Fractional Order Terminal Sliding Mode Tracking Control for Linear Motor , 2018, IEEE Transactions on Industrial Electronics.