A novel pedestrian detection method based on Cost-Sensitive Support Vector Machine and Chaotic Particle Swarm Optimization with T mutation

This paper presents a novel pedestrian detection method based on chaotic particle swarm optimization with T mutation (CTPSO) and cost-sensitive support vector machine (CS-SVM). In order to solve the problem of class-imbalanced in pedestrian detection, a new improve SVM named CS-SVM is proposed, which is based on the idea of assigning different weights to the errors of the two classes when the numbers of data samples from each class are imbalanced. In addition, a new type of PSO called CTPSO is used to select suitable parameters of CS-SVM, which could improve the classification ability of CS-SVM prominently. CTPSO is a novel optimization algorithm, which not only has strong global search capability but also helps to find the optimum quickly by using chaos queues and T mutation. The experiment carried out on videos from INRIA, MIT and Daimler datasets, result indicates that the effectiveness and efficiency of the proposed method, which can achieve higher accuracy than other three state of the art algorithms. Streszczenie. Przedstawiono nową metode detekcji pieszych bazującą na algorytmie mrowkowym z mutacją T oraz mechanizmie SVM. Zaproponowano nowy algorytm CS-SVM polegający na przyporządkowaniu roznych wag bledow w dwoch klasach kiedy liczba probek w kazdej klasie jest nierowna. Optimum znajdowane jest szybko przy wykorzystaniu mutacji T. Przeprowadzono eksperymenty bazujące na roznych bazach danych. (Nowa metoda detekcji pieszych bazująca na mechanizmie SVM i algorytmie mrowkowym z mutacją T)

[1]  Rob Law,et al.  Cauchy mutation based on objective variable of Gaussian particle swarm optimization for parameters selection of SVM , 2011, Expert Syst. Appl..

[2]  Ren Gang,et al.  Traffic safety forecasting method by particle swarm optimization and support vector machine , 2011, Expert Syst. Appl..

[3]  S. Wiak,et al.  Influence of the constraints on the optimal problem solution using particle swarm algorithm , 2010 .

[4]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[5]  Songlin Sun,et al.  Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine , 2011, Expert systems with applications.

[6]  Dariu Gavrila,et al.  Monocular Pedestrian Detection: Survey and Experiments , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Lixiang Li,et al.  CHAOTIC PARTICLE SWARM OPTIMIZATION FOR ECONOMIC DISPATCH CONSIDERING THE GENERATOR CONSTRAINTS , 2007 .

[8]  Mehmet Gedikpinar The speed control of DC motors with Support Vector Machine , 2011 .

[9]  Yanqing Zhang,et al.  SVMs Modeling for Highly Imbalanced Classification , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[10]  Anthony L Spek,et al.  Probability plots based on Student's t-distribution. , 2009, Acta crystallographica. Section A, Foundations of crystallography.

[11]  Wen Gao,et al.  Locally Assembled Binary (LAB) feature with feature-centric cascade for fast and accurate face detection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Hong Qiao,et al.  An Efficient Tree Classifier Ensemble-Based Approach for Pedestrian Detection , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Luo Yongfen,et al.  Chaotic characteristics of time series of partial discharges in oilpaper insulation and their applications in pattern recognition , 2011 .

[14]  Jianjun Wang,et al.  Margin calibration in SVM class-imbalanced learning , 2009, Neurocomputing.

[15]  Gyemin Lee,et al.  Nested support vector machines , 2010, IEEE Trans. Signal Process..