Spin–orbit coupling in quantum gases

Spin–orbit coupling links a particle’s velocity to its quantum-mechanical spin, and is essential in numerous condensed matter phenomena, including topological insulators and Majorana fermions. In solid-state materials, spin–orbit coupling originates from the movement of electrons in a crystal’s intrinsic electric field, which is uniquely prescribed in any given material. In contrast, for ultracold atomic systems, the engineered ‘material parameters’ are tunable: a variety of synthetic spin–orbit couplings can be engineered on demand using laser fields. Here we outline the current experimental and theoretical status of spin–orbit coupling in ultracold atomic systems, discussing unique features that enable physics impossible in any other known setting.

[1]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[2]  M. Gell-Mann Symmetries of baryons and mesons , 1962 .

[3]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[4]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[5]  E. Rashba,et al.  Oscillatory effects and the magnetic susceptibility of carriers in inversion layers , 1984 .

[6]  F. Wilczek,et al.  Geometric Phases in Physics , 1989 .

[7]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[8]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[9]  Immanuel Bloch,et al.  Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .

[10]  D. Stamper-Kurn,et al.  Periodically dressed Bose-Einstein condensate: a superfluid with an anisotropic and variable critical velocity. , 2001, Physical review letters.

[11]  C. Regal,et al.  Tuning p-wave interactions in an ultracold Fermi gas of atoms. , 2002, Physical Review Letters.

[12]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[13]  A. Leggett,et al.  Bose-Einstein condensation of spin-1/2 atoms with conserved total spin , 2003 .

[14]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[15]  Dimitrie Culcer,et al.  Universal intrinsic spin Hall effect. , 2004, Physical review letters.

[16]  D. D. Awschalom,et al.  Observation of the Spin Hall Effect in Semiconductors , 2004, Science.

[17]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[18]  J Ruseckas,et al.  Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. , 2005, Physical review letters.

[19]  P Zoller,et al.  Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. , 2005, Physical review letters.

[20]  D. Sheehy,et al.  Superfluid transition in a rotating fermi gas with resonant interactions. , 2006, Physical review letters.

[21]  Spin Hall effects for cold atoms in a light-induced gauge potential. , 2006, Physical review letters.

[22]  L. I. Magarill,et al.  Bound states in a two-dimensional short range potential induced by the spin-orbit interaction. , 2005, Physical review letters.

[23]  K. Ensslin,et al.  Measurement of Rashba and Dresselhaus spin-orbit magnetic fields , 2007, 0709.2509.

[24]  N. Cooper,et al.  Strongly resonant p-wave superfluids. , 2007, Physical review letters.

[25]  L. Balents,et al.  Topological invariants of time-reversal-invariant band structures , 2007 .

[26]  Chuanwei Zhang,et al.  px+ipy superfluid from s-wave interactions of fermionic cold atoms. , 2008, Physical review letters.

[27]  Wolfgang Ketterle,et al.  Making, probing and understanding ultracold Fermi gases , 2008, 0801.2500.

[28]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[29]  Matthew P. A. Fisher,et al.  Boson localization and the superfluid‐insulator transition , 2008 .

[30]  Sandro Stringari,et al.  Theory of ultracold atomic Fermi gases , 2007, 0706.3360.

[31]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[32]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[33]  D. Awschalom,et al.  Emergence of the persistent spin helix in semiconductor quantum wells , 2009, Nature.

[34]  Michael Levin,et al.  Fractional topological insulators. , 2009, Physical review letters.

[35]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[36]  Xiong-Jun Liu,et al.  Effect of induced spin-orbit coupling for atoms via laser fields. , 2008, Physical review letters.

[37]  M. Lewenstein,et al.  Creating p-wave superfluids and topological excitations in optical lattices , 2009, 0908.4568.

[38]  J. Dalibard,et al.  Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms , 2010, 1002.0578.

[39]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[40]  Hui Zhai,et al.  Spin-orbit coupled spinor Bose-Einstein condensates. , 2010, Physical review letters.

[41]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[42]  M. Lewenstein,et al.  Wilson fermions and axion electrodynamics in optical lattices. , 2010, Physical review letters.

[43]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[44]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[45]  Ian Mondragon-Shem,et al.  Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling , 2008, 0809.3532.

[46]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[47]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[48]  I Bloch,et al.  Experimental realization of strong effective magnetic fields in an optical lattice. , 2011, Physical review letters.

[49]  G. Juzeliūnas,et al.  Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms , 2011, 1102.3945.

[50]  Chuanwei Zhang,et al.  BCS-BEC crossover and topological phase transition in 3D spin-orbit coupled degenerate Fermi gases. , 2011, Physical review letters.

[51]  Liang Jiang,et al.  Majorana fermions in equilibrium and in driven cold-atom quantum wires. , 2011, Physical review letters.

[52]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[53]  Jing Zhang,et al.  Bose-Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers , 2011, 1106.0199.

[54]  Hui Zhai,et al.  Spin-orbit coupled Fermi gases across a Feshbach resonance. , 2011, Physical review letters.

[55]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[56]  Shizhong Zhang,et al.  Bose-Einstein condensates with spin-orbit interaction. , 2011, Physical review letters.

[57]  Benni Reznik,et al.  Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects. , 2012, Physical review letters.

[58]  Hui Zhai,et al.  Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate. , 2012, Physical review letters.

[59]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[60]  V. Galitski,et al.  Synthetic 3D spin-orbit coupling. , 2011, Physical review letters.

[61]  Tigran A. Sedrakyan,et al.  Composite fermion state of spin-orbit coupled bosons , 2012, 1208.6266.

[62]  Nandini Trivedi,et al.  Bose-Hubbard models with synthetic spin-orbit coupling: Mott insulators, spin textures, and superfluidity. , 2012, Physical review letters.

[63]  Hui Zhai,et al.  Spin-orbit coupled degenerate Fermi gases. , 2012, Physical review letters.

[64]  E. Rico,et al.  Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. , 2012, Physical review letters.

[65]  Tarik Yefsah,et al.  Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. , 2012, Physical review letters.

[66]  M. Lewenstein,et al.  Tunable gauge potential for neutral and spinless particles in driven optical lattices. , 2012, Physical review letters.

[67]  Zi Cai,et al.  Magnetic phases of bosons with synthetic spin-orbit coupling in optical lattices , 2012, 1205.3116.

[68]  R. A. Williams,et al.  Synthetic Partial Waves in Ultracold Atomic Collisions , 2012, Science.

[69]  V. Galitski,et al.  Exotic quantum spin models in spin-orbit-coupled Mott insulators. , 2012, Physical review letters.

[70]  Kangjun Seo,et al.  Emergence of Majorana and Dirac particles in ultracold fermions via tunable interactions, spin-orbit effects, and Zeeman fields. , 2012, Physical review letters.