Combinatorial analysis of 2D -NOESY spectra in Nuclear Magnetic Resonance spectroscopy of RNA molecules

[1]  Jacek Blazewicz,et al.  Evolutionary approach to NOE paths assignment in RNA structure elucidation , 2004, 2004 Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[2]  Christian Griesinger,et al.  Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients , 1999 .

[3]  S. Talukdar,et al.  Automated probabilistic method for assigning backbone resonances of (13C,15N)-labeled proteins , 1997, Journal of biomolecular NMR.

[4]  O. Jardetzky,et al.  Biological Macromolecules: NMR Parameters , 2007 .

[5]  Yoh-Han Pao,et al.  A new approach to the traveling salesman problem , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[6]  Dudley H. Williams,et al.  Spectroscopic Methods in Organic Chemistry , 1969 .

[7]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[8]  Weixiong Zhang,et al.  An Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots , 2004, Bioinform..

[9]  R. Lück,et al.  ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. , 1999, Nucleic acids research.

[10]  Gabriele Varani,et al.  NMR investigation of RNA structure , 1996 .

[11]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[12]  A. Bax,et al.  Dipolar couplings in macromolecular structure determination. , 2001, Methods in enzymology.

[13]  H N Moseley,et al.  Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. , 2001, Methods in enzymology.

[14]  P. Güntert Structure calculation of biological macromolecules from NMR data , 1998, Quarterly Reviews of Biophysics.

[15]  Kurt Wüthrich,et al.  GARANT‐a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra , 1997 .

[16]  Thomas Dandekar,et al.  RNA Motifs and Regulatory Elements , 2012, Springer Berlin Heidelberg.

[17]  I H Osman,et al.  Meta-Heuristics Theory and Applications , 2011 .

[18]  R. Stefl,et al.  NMR methodology for the study of nucleic acids. , 2001, Current opinion in structural biology.

[19]  Gary D. Stormo,et al.  Phylogenetically enhanced statistical tools for RNA structure prediction , 2000, Bioinform..

[20]  Gary D. Stormo,et al.  An RNA folding method capable of identifying pseudoknots and base triples , 1998, Bioinform..

[21]  R. Fraser The structure of deoxyribose nucleic acid. , 2004, Journal of structural biology.

[22]  Z Chen,et al.  Real-space molecular-dynamics structure refinement. , 1999, Acta crystallographica. Section D, Biological crystallography.

[23]  H. Atreya,et al.  A tracked approach for automated NMR assignments in proteins (TATAPRO) , 2000, Journal of biomolecular NMR.

[24]  D. Turner,et al.  Solution structure of (rGGCAGGCC)2 by two-dimensional NMR and the iterative relaxation matrix approach. , 1996, Biochemistry.

[25]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[26]  Siu-Ming Yiu,et al.  Predicting RNA Secondary Structures with Arbitrary Pseudoknots by Maximizing the Number of Stacking Pairs , 2003, J. Comput. Biol..

[27]  Eric Westhof,et al.  RNA Tertiary Structure , 2006 .

[28]  G. Montelione,et al.  Automated analysis of protein NMR assignments using methods from artificial intelligence. , 1997, Journal of molecular biology.

[29]  S. Neidle Nucleic Acid Structure and Recognition , 2002 .

[30]  Arthur M. Lesk,et al.  Introduction to bioinformatics , 2002 .

[31]  M. Nilges Applications of Molecular Modeling in NMR Structure Determination , 2001 .

[32]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[33]  A. Fire,et al.  Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Neidle Oxford handbook of nucleic acid structure , 1998 .

[35]  Werner Braun,et al.  Automated combined assignment of NOESY spectra and three-dimensional protein structure determination , 1997, Journal of biomolecular NMR.

[36]  David Neuhaus,et al.  The Nuclear Overhauser Effect in Structural and Conformational Analysis , 1989 .

[37]  J. Cavanagh Protein NMR Spectroscopy: Principles and Practice , 1995 .

[38]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[39]  B. Ganem RNA world , 1987, Nature.

[40]  D. Haussler,et al.  Using multiple alignments and phylogenetic trees to detect RNA secondary structure. , 1996, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[41]  G. A. van der Marel,et al.  Carbon-13 NMR in conformational analysis of nucleic acid fragments. 4. The torsion angle distribution about the C3'-O3' bond in DNA constituents. , 1985, Nucleic acids research.

[42]  A. Pardi,et al.  NMR solution structure determination of RNAs. , 2000, Current opinion in structural biology.

[43]  Anthony K. Yan,et al.  A Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments , 2004, J. Comput. Biol..

[44]  Jacek Blazewicz,et al.  RNA tertiary structure determination: NOE pathways construction by tabu search , 2005, Bioinform..

[45]  O. Jardetzky Jardetzky, Oleg: NMR in Molecular Biology—A History of Basic Ideas , 2007 .

[46]  P. J. Kraulis,et al.  ANSIG: A program for the assignment of protein 1H 2D NMR spectra by interactive computer graphics , 1989, Journal of Magnetic Resonance (1969).

[47]  M. Kanehisa Post-Genome Informatics , 2000 .

[48]  Lawrence Davis,et al.  Applying Adaptive Algorithms to Epistatic Domains , 1985, IJCAI.

[49]  H N Moseley,et al.  Automated analysis of NMR assignments and structures for proteins. , 1999, Current opinion in structural biology.

[50]  A M Gronenborn,et al.  New methods of structure refinement for macromolecular structure determination by NMR. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Jacek Blazewicz,et al.  An Algorithm for an Automatic NOE Pathways Analysis of 2D NMR Spectra of RNA Duplexes , 2004, J. Comput. Biol..

[52]  Jacek Blazewicz,et al.  Tabu search algorithm for DNA sequencing by hybridization with isothermic libraries , 2004, Comput. Biol. Chem..

[53]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[54]  T. Cech,et al.  Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena. , 1990, Bioscience reports.

[55]  Craig A. Stewart,et al.  Introduction to computational biology , 2005 .

[56]  Sybren S. Wijmenga,et al.  THE USE OF NMR METHODS FOR CONFORMATIONAL STUDIES OF NUCLEIC ACIDS , 1998 .

[57]  Richard R. Ernst,et al.  Investigation of exchange processes by two‐dimensional NMR spectroscopy , 1979 .

[58]  Cornelis W. Hilbers,et al.  Nucleic Acids: Spectra, Structures, and Dynamics , 2007 .

[59]  Chris Bailey-Kellogg,et al.  A random graph approach to NMR sequential assignment. , 2005 .

[60]  G. Varani,et al.  RNA structure and NMR spectroscopy , 1991, Quarterly Reviews of Biophysics.

[61]  V. Juan,et al.  RNA secondary structure prediction based on free energy and phylogenetic analysis. , 1999, Journal of molecular biology.

[62]  M. Zuker,et al.  Structural analysis by energy dot plot of a large mRNA. , 1993, Journal of molecular biology.

[63]  Maciej Drozdowski,et al.  Selected problems of scheduling tasks in multiprocessor computer systems , 1997 .

[64]  D. Turner,et al.  Structure of (rGGCGAGCC)2 in solution from NMR and restrained molecular dynamics. , 1993, Biochemistry.

[65]  Jacek Blazewicz,et al.  Evolutionary algorithm for a reconstruction of NOE paths in NMR spectra of RNA chains , 2004 .

[66]  Michael Nilges,et al.  ARIA: automated NOE assignment and NMR structure calculation , 2003, Bioinform..

[67]  F. D. Leeuw,et al.  The relationship between proton-proton NMR coupling constants and substituent electronegativities—I : An empirical generalization of the karplus equation , 1980 .

[68]  Hartmut Oschkinat,et al.  Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques , 1997, Journal of biomolecular NMR.

[69]  D. Turner,et al.  Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAGGUCUC)2 by two-dimensional NMR and simulated annealing. , 1996, Biochemistry.

[70]  Jacek Blazewicz,et al.  DNA Sequencing With Positive and Negative Errors , 1999, J. Comput. Biol..

[71]  R. Adamiak,et al.  Solution structure of RNA duplexes containing alternating CG base pairs: NMR study of r(CGCGCG)2 and 2'-O-Me(CGCGCG)2 under low salt conditions. , 1997, Nucleic acids research.

[72]  Horst Kessler,et al.  Automated backbone assignment of labeled proteins using the threshold accepting algorithm , 1998, Journal of biomolecular NMR.

[73]  Catalytic RNA: structure and mechanism. , 1993, Biochemical Society transactions.

[74]  M. Billeter,et al.  Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. , 1998, Journal of magnetic resonance.

[75]  Janusz Kaczmarek,et al.  Sequential and parallel algorithms for DNA sequencing , 1997, Comput. Appl. Biosci..

[76]  J. A. Mcdowell,et al.  Investigation of the structural basis for thermodynamic stabilities of tandem GU wobble pairs: NMR structures of (rGGAGUUCC)2 and (rGGAUGUCC)2. , 1997, Biochemistry.

[77]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[78]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[79]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.