Decomposition of generic multivariate polynomials

We consider the composition <i>f =g o h</i> of two systems <i>g= (g<sub>0</sub>, ..., g<sub>t</sub>)</i> and <i>h=(h<sub>0</sub>, ..., h<sub>s</sub>)</i> of homogeneous multivariate polynomials over a field K, where each <i>g</i><sub><i>j</i></sub> ∈ K[<i>y</i><sub>0</sub>, ..., <i>y</i><sub><i>s</i></sub>] has degree ℓ each <i>h</i><sub><i>k</i></sub> ∈ K[<i>x</i><sub>0</sub>, ..., <i>x</i><sub><i>r</i></sub>] has degree <i>m</i>, and <i>f</i><sub><i>i</i></sub> = <i>g</i><sub><i>i</i></sub>(<i>h</i><sub>0</sub>, ..., <i>h</i><sub><i>s</i></sub>) ∈ K[<i>x</i><sub>0</sub>, ..., <i>x</i><sub><i>r</i></sub>] has degree <i>n</i> = ℓ · <i>m</i>, for 0 ≤ <i>i ≤ t</i>. The motivation of this paper is to investigate the behavior of the decomposition algorithm <b>Multi-ComPoly</b> proposed at ISSAC'09 [18]. We prove that the algorithm works correctly for generic decomposable instances -- in the special cases where ℓ is 2 or 3, and <i>m</i> is 2 -- and investigate the issue of uniqueness of a <i>generic</i> decomposable instance. The uniqueness is defined w.r.t. the "normal form" of a multivariate decomposition, a new notion introduced in this paper, which is of independent interest.

[1]  Joachim von zur Gathen,et al.  Functional decomposition of polynomials , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[2]  Joachim von zur Gathen,et al.  The Number of Decomposable Univariate Polynomials , 2009, ISSAC 2009.

[3]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[4]  B. Salvy,et al.  Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems , 2022 .

[5]  David Sevilla,et al.  On Multivariate Rational Function Decomposition , 2002, J. Symb. Comput..

[6]  Moss Sweedler,et al.  Using Groebner Bases to Determine the Algebraic and Transcendental Nature of Field Extensions: Return of the Killer Tag Variables , 1993, AAECC.

[7]  Stephen M. Watt Functional Decomposition of Symbolic Polynomials , 2008, 2008 International Conference on Computational Sciences and Its Applications.

[8]  Magali Bardet,et al.  Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie , 2004 .

[9]  Xiao-Shan Gao,et al.  Inherently improper surface parametric supports , 2006, Comput. Aided Geom. Des..

[10]  Joachim von zur Gathen,et al.  Multivariate Polynomial Decomposition , 2003, Applicable Algebra in Engineering, Communication and Computing.

[11]  Jean-Charles Faugère,et al.  Cryptanalysis of 2R- Schemes , 2006, CRYPTO.

[12]  Matthew Dickerson General Polynomial Decomposition and the s-1-Decomposition are NP-Hard , 1993, Int. J. Found. Comput. Sci..

[13]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[14]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[15]  Joachim von zur Gathen,et al.  The number of decomposable univariate polynomials. extended abstract , 2009, ISSAC '09.

[16]  Jean-Charles Faugère,et al.  An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography , 2009, J. Symb. Comput..

[17]  Vangalur S. Alagar,et al.  Fast Polynominal Decomposition Algorithms , 1985, European Conference on Computer Algebra.

[18]  Susan Landau,et al.  Polynomial Decomposition Algorithms , 1989, J. Symb. Comput..

[19]  Joachim von zur Gathen,et al.  Functional Decomposition of Polynomials: The Wild Case , 1990, J. Symb. Comput..

[20]  Jean-Charles Faugère,et al.  High order derivatives and decomposition of multivariate polynomials , 2009, ISSAC '09.

[21]  Joachim von zur Gathen,et al.  Functional Decomposition of Polynomials: The Tame Case , 1990, J. Symb. Comput..

[22]  J. Faugère,et al.  On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .

[23]  J. Ritt,et al.  Prime and composite polynomials , 1922 .

[24]  Ralf Fröberg,et al.  An inequality for Hilbert series of graded algebras. , 1985 .

[25]  Kwok-Yan Lam,et al.  Decomposing Attacks on Asymmetric Cryptography Based on Mapping Compositions , 2001, Journal of Cryptology.

[26]  David Sevilla,et al.  Computation of unirational fields , 2006, J. Symb. Comput..

[27]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .