Decomposition of generic multivariate polynomials
暂无分享,去创建一个
[1] Joachim von zur Gathen,et al. Functional decomposition of polynomials , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[2] Joachim von zur Gathen,et al. The Number of Decomposable Univariate Polynomials , 2009, ISSAC 2009.
[3] Bruno Buchberger,et al. Computer algebra symbolic and algebraic computation , 1982, SIGS.
[4] B. Salvy,et al. Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems , 2022 .
[5] David Sevilla,et al. On Multivariate Rational Function Decomposition , 2002, J. Symb. Comput..
[6] Moss Sweedler,et al. Using Groebner Bases to Determine the Algebraic and Transcendental Nature of Field Extensions: Return of the Killer Tag Variables , 1993, AAECC.
[7] Stephen M. Watt. Functional Decomposition of Symbolic Polynomials , 2008, 2008 International Conference on Computational Sciences and Its Applications.
[8] Magali Bardet,et al. Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie , 2004 .
[9] Xiao-Shan Gao,et al. Inherently improper surface parametric supports , 2006, Comput. Aided Geom. Des..
[10] Joachim von zur Gathen,et al. Multivariate Polynomial Decomposition , 2003, Applicable Algebra in Engineering, Communication and Computing.
[11] Jean-Charles Faugère,et al. Cryptanalysis of 2R- Schemes , 2006, CRYPTO.
[12] Matthew Dickerson. General Polynomial Decomposition and the s-1-Decomposition are NP-Hard , 1993, Int. J. Found. Comput. Sci..
[13] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[14] Jean Charles Faugère,et al. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.
[15] Joachim von zur Gathen,et al. The number of decomposable univariate polynomials. extended abstract , 2009, ISSAC '09.
[16] Jean-Charles Faugère,et al. An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography , 2009, J. Symb. Comput..
[17] Vangalur S. Alagar,et al. Fast Polynominal Decomposition Algorithms , 1985, European Conference on Computer Algebra.
[18] Susan Landau,et al. Polynomial Decomposition Algorithms , 1989, J. Symb. Comput..
[19] Joachim von zur Gathen,et al. Functional Decomposition of Polynomials: The Wild Case , 1990, J. Symb. Comput..
[20] Jean-Charles Faugère,et al. High order derivatives and decomposition of multivariate polynomials , 2009, ISSAC '09.
[21] Joachim von zur Gathen,et al. Functional Decomposition of Polynomials: The Tame Case , 1990, J. Symb. Comput..
[22] J. Faugère,et al. On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .
[23] J. Ritt,et al. Prime and composite polynomials , 1922 .
[24] Ralf Fröberg,et al. An inequality for Hilbert series of graded algebras. , 1985 .
[25] Kwok-Yan Lam,et al. Decomposing Attacks on Asymmetric Cryptography Based on Mapping Compositions , 2001, Journal of Cryptology.
[26] David Sevilla,et al. Computation of unirational fields , 2006, J. Symb. Comput..
[27] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .