Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

Background The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. Methodology/Principal Findings We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. Conclusions These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

[1]  T. Erb,et al.  A Methylaspartate Cycle in Haloarchaea , 2011, Science.

[2]  G. Wagner,et al.  Glycosyltransferases and their Assays , 2010, Chembiochem : a European journal of chemical biology.

[3]  H. Klenk,et al.  En route to a genome-based classification of Archaea and Bacteria? , 2010, Systematic and applied microbiology.

[4]  C. Mayer,et al.  Muropeptide Rescue in Bacillus subtilis Involves Sequential Hydrolysis by β-N-Acetylglucosaminidase and N-Acetylmuramyl-l-Alanine Amidase , 2010, Journal of bacteriology.

[5]  R. DeSalle,et al.  Is the microbial tree of life verificationist? , 2010, Cladistics : the international journal of the Willi Hennig Society.

[6]  Jeffrey R. Robinson,et al.  The Complete Genome Sequence of Haloferax volcanii DS2, a Model Archaeon , 2010, PloS one.

[7]  C. Ziegler,et al.  Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of Halomonas elongata DSM 2581(T). , 2010, Biochemistry.

[8]  Ernest K. Lee,et al.  A whole-genome phylogeny of the family Pasteurellaceae. , 2010, Molecular phylogenetics and evolution.

[9]  M. Oldiges,et al.  A 2-oxoacid dehydrogenase complex of Haloferax volcanii is essential for growth on isoleucine but not on other branched-chain amino acids. , 2010, Microbiology.

[10]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[11]  Lynne A. Goodwin,et al.  Complete genome sequence of Halorhabdus utahensis type strain (AX-2T) , 2009, Standards in genomic sciences.

[12]  Lynne A. Goodwin,et al.  Complete genome sequence of Halomicrobium mukohataei type strain (arg-2T) , 2009, Standards in genomic sciences.

[13]  Neil D. Rawlings,et al.  MEROPS: the peptidase database , 2009, Nucleic Acids Res..

[14]  Debra Mohnen,et al.  The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. , 2009, Carbohydrate research.

[15]  Lynne A. Goodwin,et al.  Complete genome sequence of Halogeometricum borinquense type strain (PR3T) , 2009, Standards in genomic sciences.

[16]  I-Min A. Chen,et al.  IMG ER: a system for microbial genome annotation expert review and curation , 2009, Bioinform..

[17]  E. Koonin,et al.  Search for a 'Tree of Life' in the thicket of the phylogenetic forest , 2009, Journal of biology.

[18]  U. Sauer,et al.  d-Xylose Degradation Pathway in the Halophilic Archaeon Haloferax volcanii , 2009, The Journal of Biological Chemistry.

[19]  Alexandros Stamatakis,et al.  How Many Bootstrap Replicates Are Necessary? , 2009, RECOMB.

[20]  M. Delwiche,et al.  Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production , 2009 .

[21]  M. Göker,et al.  Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. , 2009, Mycological research.

[22]  Frank Friedrich,et al.  The thoracic morphology of Archostemata and the relationships of the extant suborders of Coleoptera (Hexapoda) , 2009, Cladistics : the international journal of the Willi Hennig Society.

[23]  Dylan Chivian,et al.  Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth , 2008, Science.

[24]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[25]  K. Schleifer,et al.  The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. , 2008, Systematic and applied microbiology.

[26]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[27]  A. Oren Microbial life at high salt concentrations: phylogenetic and metabolic diversity , 2008, Saline systems.

[28]  F Pfeiffer,et al.  Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. , 2008, Genomics.

[29]  Gloria M. Coruzzi,et al.  Automated simultaneous analysis phylogenetics (ASAP): an enabling tool for phlyogenomics , 2008, BMC Bioinformatics.

[30]  Orland R. Gonzalez,et al.  Metabolism of halophilic archaea , 2008, Extremophiles.

[31]  Pablo N. Hess,et al.  An empirical test of the midpoint rooting method , 2007, Biological journal of the Linnean Society. Linnean Society of London.

[32]  N. Galtier A model of horizontal gene transfer and the bacterial phylogeny problem. , 2007, Systematic biology.

[33]  Mark L. Brewer,et al.  Development of a Spectral Clustering Method for the Analysis of Molecular Data Sets , 2007, J. Chem. Inf. Model..

[34]  G. Jensen,et al.  Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. , 2007, International journal of systematic and evolutionary microbiology.

[35]  C. A. Schall,et al.  Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step , 2006, Biotechnology and bioengineering.

[36]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[37]  Y. Boucher,et al.  Refuting phylogenetic relationships , 2006, Biology Direct.

[38]  Friedhelm Pfeiffer,et al.  The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity , 2006, BMC Genomics.

[39]  James A. Casbon,et al.  Spectral clustering of protein sequences , 2006, Nucleic acids research.

[40]  G. Taylor,et al.  Promiscuity in the part‐phosphorylative Entner–Doudoroff pathway of the archaeon Sulfolobus solfataricus , 2005, FEBS letters.

[41]  J. Gogarten,et al.  The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic. , 2005, Molecular biology and evolution.

[42]  Friedhelm Pfeiffer,et al.  Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. , 2005, Genome research.

[43]  Thijs J. G. Ettema,et al.  The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. , 2005, The Biochemical journal.

[44]  T. Soderberg Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes. , 2005, Archaea.

[45]  H. Monbouquette,et al.  A Novel Archaeal Alanine Dehydrogenase Homologous to Ornithine Cyclodeaminase and μ-Crystallin , 2004, Journal of bacteriology.

[46]  Min Pan,et al.  Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. , 2004, Genome research.

[47]  M. Dyall-Smith,et al.  Cultivation of Walsby's square haloarchaeon. , 2004, FEMS microbiology letters.

[48]  T. Fukui,et al.  Concerted Action of Diacetylchitobiose Deacetylase and Exo-β-D-glucosaminidase in a Novel Chitinolytic Pathway in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1* , 2004, Journal of Biological Chemistry.

[49]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[50]  K. Timmis,et al.  Isolation of haloarchaea that grow at low salinities. , 2004, Environmental microbiology.

[51]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[52]  N. Hugouvieux-Cotte-Pattat The RhaS activator controls the Erwinia chrysanthemi 3937 genes rhiN, rhiT and rhiE involved in rhamnogalacturonan catabolism , 2004, Molecular microbiology.

[53]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[54]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[55]  Olivier Poch,et al.  RASCAL: Rapid Scanning and Correction of Multiple Sequence Alignments , 2003, Bioinform..

[56]  T. Nyström,et al.  The bacterial universal stress protein: function and regulation. , 2003, Current opinion in microbiology.

[57]  K. Ingvorsen,et al.  Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis , 2003, Extremophiles.

[58]  Robert H. White,et al.  Methanococcus jannaschii Uses a Pyruvoyl-dependent Arginine Decarboxylase in Polyamine Biosynthesis* , 2002, The Journal of Biological Chemistry.

[59]  N. Scrutton,et al.  Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp.: implications for glycine betaine catabolism. , 2001, European journal of biochemistry.

[60]  K A Johnson,et al.  Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities. , 2001, Biochemistry.

[61]  B. Stec,et al.  MJ0109 is an enzyme that is both an inositol monophosphatase and the 'missing' archaeal fructose-1,6-bisphosphatase , 2000, Nature Structural Biology.

[62]  V. Thorsson,et al.  Genome sequence of Halobacterium species NRC-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[64]  Aharon Oren,et al.  Bioenergetic Aspects of Halophilism , 1999, Microbiology and Molecular Biology Reviews.

[65]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Kessel,et al.  Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. , 1998, International journal of systematic bacteriology.

[67]  K. Miyamoto,et al.  A Novel β-N-Acetylglucosaminidase fromStreptomyces thermoviolaceus OPC-520: Gene Cloning, Expression, and Assignment to Family 3 of the Glycosyl Hydrolases , 1998, Applied and Environmental Microbiology.

[68]  R. DeSalle,et al.  Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees. , 1998, Molecular phylogenetics and evolution.

[69]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[70]  W. Altekar,et al.  Ketohexokinase (ATP:D-fructose 1-phosphotransferase) from a halophilic archaebacterium, Haloarcula vallismortis: purification and properties , 1994, Journal of bacteriology.

[71]  A. Oren The ecology of the extremely halophilic archaea , 1994 .

[72]  Z. Yang,et al.  Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. , 1993, Molecular biology and evolution.

[73]  A. Oren,et al.  Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. , 1990, International journal of systematic bacteriology.

[74]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[75]  E. Stackebrandt,et al.  Halobacterium lacusprofundi sp. nov., a Halophilic Bacterium Isolated from Deep Lake, Antarctica , 1988 .

[76]  G. Newton,et al.  gamma-Glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria , 1985, Journal of bacteriology.

[77]  H. G. Trüper,et al.  Halobacterium pharaonis sp. nov., a New, Extremely Haloalkaliphilic Archaebacterium with Low Magnesium Requirement , 1982 .

[78]  R. Portalier,et al.  Regulation of Escherichia coli K-12 hexuronate system genes: exu regulon , 1980, Journal of bacteriology.

[79]  H. Larsen,et al.  Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement , 1975, Archives of Microbiology.

[80]  M. Ginzburg,et al.  Ion metabolism in aHalobacterium , 1971, The Journal of Membrane Biology.

[81]  M. Doudoroff,et al.  The metabolism of D-galactose in Pseudomonas saccharophila. , 1957, The Journal of biological chemistry.

[82]  A. Oren,et al.  Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. , 2007, International journal of systematic and evolutionary microbiology.

[83]  A. Oren,et al.  Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi , 2007, Extremophiles.

[84]  A. Oren The Order Halobacteriales , 2006 .

[85]  T. Hansen Bergey's Manual of Systematic Bacteriology , 2005 .

[86]  K. Ingvorsen,et al.  Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. , 2003, Extremophiles : life under extreme conditions.

[87]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[88]  G. Garrity Bergey's Manual of systematic bacteriology , 2001 .

[89]  B. Tindall,et al.  Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. , 2000, International journal of systematic and evolutionary microbiology.

[90]  H. Santos,et al.  Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus , 2000, Archives of Microbiology.

[91]  K. Ihara,et al.  Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina. , 1997, International journal of systematic bacteriology.

[92]  L. Hochstein The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. , 1974, Canadian journal of microbiology.