Potentiostats for Protein Biosensing: Design Considerations and Analysis on Measurement Characteristics

The demand for the development of swift, simple, and ultrasensitive biosensors has been increasing after the introduction of innovative approaches such as bioelectronics, nanotechnology, and electrochemistry. The possibility to correlate changes in electrical parameters with the concentration of protein biomarkers in biological samples is appealing to improve sensitivity, reliability, and repeatability of the biochemical assays currently available for protein investigation. Potentiostats are the required instruments to ensure the proper cell conditioning and signal processing in accurate electrochemical biosensing applications. In this light, this review is aimed at analyzing design considerations, electrical specifications, and measurement characteristics of potentiostats, specifically customized for protein detection. This review demonstrates how a proper potentiostat for protein quantification should be able to supply voltages in a range between few mV to few V, with high resolution in terms of readable current (in the order of 100 pA). To ensure a reliable quantification of clinically relevant protein concentrations (>1 ng/mL), the accuracy of the measurement (<1%) is significant and it can be ensured with proper digital-to-analog (10-16 bits) and analog-to-digital (10-24 bits) converters. Furthermore, the miniaturisation of electrochemical systems represents a key step toward portable, real-time, and fast point-of-care applications. This review is meant to serve as a guide for the design of customized potentiostats capable of a more proper and enhanced conditioning of electrochemical biosensors for protein detection.

[1]  Giovanni De Micheli,et al.  A novel multi-working electrode potentiostat for electrochemical detection of metabolites , 2010, 2010 IEEE Sensors.

[2]  M. Fleischmann,et al.  The design and performance of potentiostats , 1963 .

[3]  Su-Moon Park,et al.  Electrochemical impedance spectroscopy. , 2010, Annual review of analytical chemistry.

[4]  Guang-Zhong Yang,et al.  Wearable electronic sensor for potentiometric and amperometric measurements , 2013, 2013 IEEE International Conference on Body Sensor Networks.

[5]  Bolaji Aremo,et al.  A Simplified Microcontroller Based Potentiostat for Low-Resource Applications , 2015 .

[6]  Chun-Yueh Huang Design of a Portable Potentiostat with Dual-microprocessors for Electrochemical Biosensors , 2015 .

[7]  Antje J. Baeumner,et al.  An embedded system for portable electrochemical detection , 2007 .

[8]  Karen Twomey,et al.  A Portable Sensing System for Impedance based Detection of Biotoxin Substances , 2017, BIODEVICES.

[9]  Martin Brandl,et al.  A New, Low-cost Potentiostat for Environmental Measurements with an Easy-to-use PC Interface , 2015 .

[10]  M. Medina‐Sánchez,et al.  On-chip magneto-immunoassay for Alzheimer's biomarker electrochemical detection by using quantum dots as labels. , 2014, Biosensors & bioelectronics.

[11]  Y. Long,et al.  Recent developments and applications of screen-printed electrodes in environmental assays--a review. , 2012, Analytica chimica acta.

[12]  Yu-Qing Miao,et al.  Impedimetric biosensors. , 2004, Journal of bioscience and bioengineering.

[13]  Ivana Murković Steinberg,et al.  A wireless potentiostat for mobile chemical sensing and biosensing. , 2015, Talanta.

[14]  Alar Ainla,et al.  Open-Source Potentiostat for Wireless Electrochemical Detection with Smartphones , 2018, Analytical chemistry.

[15]  Tse-Chuan Chou,et al.  A portable and wireless data transmission potentiostat , 2004, The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings..

[16]  Su-Moon Park,et al.  Electrochemical impedance spectroscopy for better electrochemical measurements. , 2003, Analytical chemistry.

[17]  Jae Ho Shin,et al.  Electrochemical sensors. , 2010, Analytical chemistry.

[18]  Chun-Yueh Huang,et al.  A Portable Potentiostat for Electrochemical Sensors , 2007 .

[19]  Xinjian Huang,et al.  A fast and simple electrochemical impedance spectroscopy measurement technique and its application in portable, low-cost instrument for impedimetric biosensing , 2011 .

[20]  Mehdi Javanmard,et al.  Microneedle Biosensor: A Method for Direct Label-free Real Time Protein Detection. , 2013, Sensors and actuators. B, Chemical.

[21]  Michela Borghetti,et al.  Wireless Point-of-Care Platform With Screen-Printed Sensors for Biomarkers Detection , 2017, IEEE Transactions on Instrumentation and Measurement.

[22]  Andrés Felipe Sandoval Cruz,et al.  A low-cost miniaturized potentiostat for point-of-care diagnosis. , 2014, Biosensors & bioelectronics.

[23]  Kuldeep Mahato,et al.  Biomaterials for Biosensing Applications , 2016 .

[24]  B. Alberts,et al.  Molecular Biology of the Cell (Fifth Edition) , 2008 .

[25]  Aaron R Wheeler,et al.  DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration , 2015, PloS one.

[26]  James S. Harris,et al.  Thin Film Nanoelectronic Probe for Protein Detection , 2013 .

[27]  Zhiyong Zhang,et al.  Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor. , 2014, ACS nano.

[28]  Largus T Angenent,et al.  A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. , 2012, Biosensors & bioelectronics.

[29]  Alex Nemiroski,et al.  Universal mobile electrochemical detector designed for use in resource-limited applications , 2014, Proceedings of the National Academy of Sciences.

[30]  Abdelhamid Errachid,et al.  A fully integrated electrochemical biosensor platform fabrication process for cytokines detection. , 2017, Biosensors & bioelectronics.

[31]  F. Lisdat,et al.  The use of electrochemical impedance spectroscopy for biosensing , 2008, Analytical and bioanalytical chemistry.

[32]  Josep Samitier,et al.  Portable Bio-Devices: Design of electrochemical instruments from miniaturized to implantable devices , 2011 .

[33]  Hui Xu,et al.  Electrochemical Sensors for Clinic Analysis , 2008, Sensors.

[34]  Mitra Djamal,et al.  Development of a low cost potentiostat using ATXMEGA32 , 2014 .

[35]  N. Pourmand,et al.  Label-Free Impedance Biosensors: Opportunities and Challenges. , 2007, Electroanalysis.

[36]  Kaory Barrientos-Urdinola,et al.  Desarrollo de un genosensor piezoeléctrico , 2020 .

[37]  Jordi Colomer-Farrarons,et al.  Bioelectronics for Amperometric Biosensors , 2013 .

[38]  Seokheun Choi,et al.  Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins , 2010, Microfluidics and nanofluidics.

[39]  Giovanni De Micheli,et al.  A Differential Electrochemical Readout ASIC With Heterogeneous Integration of Bio-Nano Sensors for Amperometric Sensing , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[40]  O. O. Ajide,et al.  Development of a field-portable digital potentiostat , 2014 .

[41]  Steven C. Petrovic,et al.  Cyclic Voltammetry of Hexachloroiridate(IV): An Alternative to the Electrochemical Study of the Ferricyanide Ion , 2000 .

[42]  G. Johansson,et al.  An immunological interleukine-6 capacitive biosensor using perturbation with a potentiostatic step. , 1998, Biosensors & bioelectronics.

[43]  A. Errachid,et al.  A low-cost and miniaturized potentiostat for sensing of biomolecular species such as TNF-α by electrochemical impedance spectroscopy. , 2018, Biosensors & bioelectronics.

[44]  Emanuel Carrilho,et al.  Capillary Electrophoresis and Microchip Capillary Electrophoresis: Principles, Applications, and Limitations , 2013 .

[45]  David Harvey,et al.  Analytical Chemistry 2.0—an open-access digital textbook , 2011, Analytical and bioanalytical chemistry.

[46]  D. Fotiadis,et al.  Electrochemical biosensor platform for TNF-α cytokines detection in both artificial and human saliva: Heart failure , 2017 .

[47]  C. Brett,et al.  Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. , 2015, Analytica chimica acta.

[48]  S. Vigneshvar,et al.  Recent Advances in Biosensor Technology for Potential Applications – An Overview , 2016, Front. Bioeng. Biotechnol..

[49]  Mustafa Kemal Sezgintürk,et al.  A review on impedimetric biosensors , 2016, Artificial cells, nanomedicine, and biotechnology.

[50]  Maricel G. Kann,et al.  Chapter 4: Protein Interactions and Disease , 2012, PLoS Comput. Biol..

[51]  Kelley J. Rountree,et al.  A Practical Beginner’s Guide to Cyclic Voltammetry , 2017 .

[52]  A. Das,et al.  A Potentiometric Sensor System with Integrated Circuitry for in situ Environmental Monitoring , 2006, 2006 Sixth IEEE Conference on Nanotechnology.

[53]  Ching-Hsing Luo,et al.  A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations , 2016, Sensors.

[54]  Gabriel Ybarra,et al.  Electrochemical immunosensor for the determination of β-casein , 2015 .

[55]  Lin Li,et al.  CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review , 2016, Sensors.

[56]  Jihoon Lee,et al.  Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer , 2017, Sensors.

[57]  Hua-Zhong Yu,et al.  A USB-based electrochemical biosensor prototype for point-of-care diagnosis , 2012 .

[58]  Fabio Augusto,et al.  Point-of-use electroanalytical platform based on homemade potentiostat and smartphone for multivariate data processing , 2016 .

[59]  Kuo-Chuan Ho,et al.  Design of a portable potentiostat for electrochemical sensors , 2004, Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004..

[60]  Wendong Zhang,et al.  Progress of new label-free techniques for biosensors: a review , 2015, Critical reviews in biotechnology.

[61]  Joseph Wang,et al.  Analytical Electrochemistry: Wang/Analytical Electrochemistry, Third Edition , 2006 .

[62]  Parikha Mehrotra Biosensors and their applications - A review. , 2016, Journal of oral biology and craniofacial research.

[63]  Nigel Chaffey,et al.  Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. Molecular biology of the cell. 4th edn. , 2003 .

[64]  Junji Tominaga,et al.  Label-free methods of reporting biomolecular interactions by optical biosensors. , 2013, The Analyst.