Bifurcation of Hyperbolic Planforms
暂无分享,去创建一个
[1] H. Iwaniec. Spectral methods of automorphic forms , 2002 .
[2] S. Broughton,et al. CLASSIFYING FINITE GROUP ACTIONS ON SURFACES OF LOW GENUS , 1991 .
[3] S. Helgason. Groups and geometric analysis , 1984 .
[4] M. Pollicott,et al. Dynamical Systems and Ergodic Theory , 1998 .
[5] Oren Shriki,et al. Rate Models for Conductance-Based Cortical Neuronal Networks , 2003, Neural Computation.
[6] Gilles Tarjus,et al. Periodic boundary conditions on the pseudosphere , 2007 .
[7] H. Sompolinsky,et al. 13 Modeling Feature Selectivity in Local Cortical Circuits , 2022 .
[8] Rebecca B. Hoyle. Pattern Formation: An Introduction to Methods , 2006 .
[9] Neil J. Cornish,et al. On the eigenmodes of compact hyperbolic 3-manifolds , 1999 .
[10] C. Ryan Vinroot,et al. Triangular Surface Tiling Groups for Low Genus , 2001 .
[11] A. Fässler,et al. Group Theoretical Methods and Their Applications , 1992 .
[12] N. Balazs,et al. Chaos on the pseudosphere , 1986 .
[13] P. Chossat,et al. Methods in Equivariant Bifurcations and Dynamical Systems , 2000 .
[14] Mark Pollicott,et al. Distributions at infinity for Riemann surfaces , 1989 .
[15] James E. Gentle. Algorithms and Programming , 2009 .
[16] Martin Golubitsky,et al. Planforms in two and three dimensions , 1992 .
[17] P. Buser,et al. Geometry and Spectra of Compact Riemann Surfaces , 1992 .
[18] Olivier P. Faugeras,et al. Hyperbolic Planforms in Relation to Visual Edges and Textures Perception , 2009, PLoS Comput. Biol..
[19] R. Aurich,et al. Statistical properties of highly excited quantum eigenstates of a strongly chaotic system , 1993 .
[20] Jean-Pierre Serre,et al. Représentations linéaires des groupes finis , 1967 .
[21] Olivier D. Faugeras,et al. Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations , 2009, SIAM J. Appl. Dyn. Syst..
[22] Peter Dayan,et al. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .
[23] Jean-Philippe Uzan,et al. Eigenmodes of three-dimensional spherical spaces and their application to cosmology , 2002 .
[24] W. Miller. Symmetry groups and their applications , 1972 .
[25] R. Tennant. Algebra , 1941, Nature.
[26] C. Series,et al. Some geometrical models of chaotic dynamics , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[27] M. Golubitsky,et al. Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[28] Martin Golubitsky,et al. What Geometric Visual Hallucinations Tell Us about the Visual Cortex , 2002, Neural Computation.
[29] R. Aurich,et al. Periodic-orbit sum rules for the Hadamard-Gutzwiller model , 1989 .
[30] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[31] Erwin Schrödinger International,et al. Supported by the Austrian Federal Ministry of Education, Science and Culture , 1689 .
[32] Paul C. Bressloff,et al. Dynamical Mechanism for Sharp Orientation Tuning in an Integrate-and-Fire Model of a Cortical Hypercolumn , 2000, Neural Computation.
[33] Neil J. Cornish,et al. RINGING THE EIGENMODES FROM COMPACT MANIFOLDS , 1998 .
[34] A. Weil,et al. Groupes des formes quadratiques indéfinies et des formes bilinéaires alternées , 1958 .
[35] Bruno A. Olshausen,et al. Book Review , 2003, Journal of Cognitive Neuroscience.
[36] B. Ermentrout. Neural networks as spatio-temporal pattern-forming systems , 1998 .
[37] Maher Moakher,et al. A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..
[38] Kaiki Taro Inoue. Computation of eigenmodes on a compact hyperbolic 3-space , 1999 .