Bifurcation of Hyperbolic Planforms

Motivated by a model for the perception of textures by the visual cortex in primates, we analyze the bifurcation of periodic patterns for nonlinear equations describing the state of a system defined on the space of structure tensors, when these equations are further invariant with respect to the isometries of this space. We show that the problem reduces to a bifurcation problem in the hyperbolic plane $\mathcal {D}$ (Poincaré disc). We make use of the concept of a periodic lattice in $\mathcal {D}$ to further reduce the problem to one on a compact Riemann surface $\mathcal {D}/\varGamma$, where Γ is a cocompact, torsion-free Fuchsian group. The knowledge of the symmetry group of this surface allows us to use the machinery of equivariant bifurcation theory. Solutions which generically bifurcate are called “H-planforms”, by analogy with the “planforms” introduced for pattern formation in Euclidean space. This concept is applied to the case of an octagonal periodic pattern, where we are able to classify all possible H-planforms satisfying the hypotheses of the Equivariant Branching Lemma. These patterns are, however, not straightforward to compute, even numerically, and in the last section we describe a method for computation illustrated with a selection of images of octagonal H-planforms.

[1]  H. Iwaniec Spectral methods of automorphic forms , 2002 .

[2]  S. Broughton,et al.  CLASSIFYING FINITE GROUP ACTIONS ON SURFACES OF LOW GENUS , 1991 .

[3]  S. Helgason Groups and geometric analysis , 1984 .

[4]  M. Pollicott,et al.  Dynamical Systems and Ergodic Theory , 1998 .

[5]  Oren Shriki,et al.  Rate Models for Conductance-Based Cortical Neuronal Networks , 2003, Neural Computation.

[6]  Gilles Tarjus,et al.  Periodic boundary conditions on the pseudosphere , 2007 .

[7]  H. Sompolinsky,et al.  13 Modeling Feature Selectivity in Local Cortical Circuits , 2022 .

[8]  Rebecca B. Hoyle Pattern Formation: An Introduction to Methods , 2006 .

[9]  Neil J. Cornish,et al.  On the eigenmodes of compact hyperbolic 3-manifolds , 1999 .

[10]  C. Ryan Vinroot,et al.  Triangular Surface Tiling Groups for Low Genus , 2001 .

[11]  A. Fässler,et al.  Group Theoretical Methods and Their Applications , 1992 .

[12]  N. Balazs,et al.  Chaos on the pseudosphere , 1986 .

[13]  P. Chossat,et al.  Methods in Equivariant Bifurcations and Dynamical Systems , 2000 .

[14]  Mark Pollicott,et al.  Distributions at infinity for Riemann surfaces , 1989 .

[15]  James E. Gentle Algorithms and Programming , 2009 .

[16]  Martin Golubitsky,et al.  Planforms in two and three dimensions , 1992 .

[17]  P. Buser,et al.  Geometry and Spectra of Compact Riemann Surfaces , 1992 .

[18]  Olivier P. Faugeras,et al.  Hyperbolic Planforms in Relation to Visual Edges and Textures Perception , 2009, PLoS Comput. Biol..

[19]  R. Aurich,et al.  Statistical properties of highly excited quantum eigenstates of a strongly chaotic system , 1993 .

[20]  Jean-Pierre Serre,et al.  Représentations linéaires des groupes finis , 1967 .

[21]  Olivier D. Faugeras,et al.  Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations , 2009, SIAM J. Appl. Dyn. Syst..

[22]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[23]  Jean-Philippe Uzan,et al.  Eigenmodes of three-dimensional spherical spaces and their application to cosmology , 2002 .

[24]  W. Miller Symmetry groups and their applications , 1972 .

[25]  R. Tennant Algebra , 1941, Nature.

[26]  C. Series,et al.  Some geometrical models of chaotic dynamics , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  Martin Golubitsky,et al.  What Geometric Visual Hallucinations Tell Us about the Visual Cortex , 2002, Neural Computation.

[29]  R. Aurich,et al.  Periodic-orbit sum rules for the Hadamard-Gutzwiller model , 1989 .

[30]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[31]  Erwin Schrödinger International,et al.  Supported by the Austrian Federal Ministry of Education, Science and Culture , 1689 .

[32]  Paul C. Bressloff,et al.  Dynamical Mechanism for Sharp Orientation Tuning in an Integrate-and-Fire Model of a Cortical Hypercolumn , 2000, Neural Computation.

[33]  Neil J. Cornish,et al.  RINGING THE EIGENMODES FROM COMPACT MANIFOLDS , 1998 .

[34]  A. Weil,et al.  Groupes des formes quadratiques indéfinies et des formes bilinéaires alternées , 1958 .

[35]  Bruno A. Olshausen,et al.  Book Review , 2003, Journal of Cognitive Neuroscience.

[36]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[37]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[38]  Kaiki Taro Inoue Computation of eigenmodes on a compact hyperbolic 3-space , 1999 .