Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery

[1]  D. Spalton,et al.  Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target , 2016, Scientific Reports.

[2]  Andrew F. Smith,et al.  Improving the drug development process by reducing the impact of adverse events: the case of cataracts considered. , 2016, Drug discovery today.

[3]  I. M. Wormstone,et al.  Experimental models for posterior capsule opacification research. , 2016, Experimental eye research.

[4]  J. Debnath,et al.  Autophagy at the crossroads of catabolism and anabolism , 2015, Nature Reviews Molecular Cell Biology.

[5]  K. J. Gervais,et al.  Cyclosporine A prevents ex vivo PCO formation through induction of autophagy-mediated cell death. , 2015, Experimental eye research.

[6]  D. Spalton,et al.  An in vitro evaluation of the Anew Zephyr open-bag IOL in the prevention of posterior capsule opacification using a human capsular bag model. , 2014, Investigative ophthalmology & visual science.

[7]  G. Johnson,et al.  Sulforaphane induces autophagy through ERK activation in neuronal cells , 2014, FEBS letters.

[8]  C. Mitchell,et al.  Autophagy in the eye: implications for ocular cell health. , 2014, Experimental eye research.

[9]  E. V. Van Bockstaele,et al.  Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells , 2014, Autophagy.

[10]  Eric H. Baehrecke,et al.  Self-consumption: the interplay of autophagy and apoptosis , 2014, Nature Reviews Molecular Cell Biology.

[11]  S. Milazzo,et al.  [Posterior capsule opacification]. , 2014, Journal francais d'ophtalmologie.

[12]  Gary C. Brown,et al.  Cataract surgery cost utility revisited in 2012: a new economic paradigm. , 2013, Ophthalmology.

[13]  M. Kantorow,et al.  Autophagy and mitophagy participate in ocular lens organelle degradation. , 2013, Experimental eye research.

[14]  R. Bowater,et al.  Sulforaphane can protect lens cells against oxidative stress: implications for cataract prevention. , 2013, Investigative ophthalmology & visual science.

[15]  Takehiko Sasaki,et al.  Deletion of Autophagy-related 5 (Atg5) and Pik3c3 Genes in the Lens Causes Cataract Independent of Programmed Organelle Degradation* , 2013, The Journal of Biological Chemistry.

[16]  森下 英晃 Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation , 2013 .

[17]  S. Ryter,et al.  Autophagy in human health and disease. , 2013, The New England journal of medicine.

[18]  N. Doudican,et al.  Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways , 2012, Oncology reports.

[19]  A. Cvekl,et al.  Spatial expression patterns of autophagy genes in the eye lens and induction of autophagy in lens cells , 2012, Molecular vision.

[20]  C. Hetz The unfolded protein response: controlling cell fate decisions under ER stress and beyond , 2012, Nature Reviews Molecular Cell Biology.

[21]  Yoon-Jin Lee,et al.  Sulforaphane Induces Antioxidative and Antiproliferative Responses by Generating Reactive Oxygen Species in Human Bronchial Epithelial BEAS-2B Cells , 2011, Journal of Korean medical science.

[22]  G. Lam,et al.  Autophagy signaling through reactive oxygen species. , 2011, Antioxidants & redox signaling.

[23]  Nam-Ho Kim,et al.  Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? , 2011, Journal of signal transduction.

[24]  N. Doudican,et al.  Enhancement of arsenic trioxide cytotoxicity by dietary isothiocyanates in human leukemic cells via a reactive oxygen species-dependent mechanism. , 2010, Leukemia research.

[25]  J. Chambard,et al.  ERK and cell death: Mechanisms of ERK‐induced cell death – apoptosis, autophagy and senescence , 2010, The FEBS journal.

[26]  A. Kong,et al.  Molecular Targets of Dietary Phenethyl Isothiocyanate and Sulforaphane for Cancer Chemoprevention , 2010, The AAPS Journal.

[27]  Thomas Kohnen,et al.  Cataract surgery with implantation of an artificial lens. , 2009, Deutsches Arzteblatt international.

[28]  S. Amin,et al.  Cellular Responses to Cancer Chemopreventive Agent D,L-Sulforaphane in Human Prostate Cancer Cells Are Initiated by Mitochondrial Reactive Oxygen Species , 2009, Pharmaceutical Research.

[29]  I. M. Wormstone,et al.  Posterior capsule opacification. , 2009, Experimental eye research.

[30]  J. Ramos The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. , 2008, The international journal of biochemistry & cell biology.

[31]  Hong Zhang,et al.  Arsenic trioxide initiates ER stress responses, perturbs calcium signalling and promotes apoptosis in human lens epithelial cells. , 2007, Experimental eye research.

[32]  T. Kubo,et al.  Sulforaphane induces cell cycle arrest and apoptosis in murine osteosarcoma cells in vitro and inhibits tumor growth in vivo. , 2007, Oncology Report.

[33]  G. Duncan,et al.  Lens cell survival after exposure to stress in the closed capsular bag. , 2007, Investigative ophthalmology & visual science.

[34]  N. Juge,et al.  Molecular basis for chemoprevention by sulforaphane: a comprehensive review , 2007, Cellular and Molecular Life Sciences.

[35]  T. Shinohara,et al.  The unfolded protein response in lens epithelial cells from galactosemic rat lenses. , 2006, Investigative ophthalmology & visual science.

[36]  Junying Yuan,et al.  Cellular response to endoplasmic reticulum stress: a matter of life or death , 2006, Cell Death and Differentiation.

[37]  G. Duncan,et al.  Growth factor receptor signalling in human lens cells: role of the calcium store. , 2005, Experimental eye research.

[38]  Y. Okuno,et al.  Redox control of catalytic activities of membrane-associated protein tyrosine kinases. , 2005, Archives of biochemistry and biophysics.

[39]  C. Qualls,et al.  Incidence of and risk factors for residual posterior capsule opacification after cataract surgery , 2004, Journal of cataract and refractive surgery.

[40]  K. Singletary,et al.  Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. , 2004, The Journal of nutrition.

[41]  K. Lazaridis,et al.  Characterisation of TGF-beta2 signalling and function in a human lens cell line. , 2004, Experimental eye research.

[42]  S. Pattingre,et al.  Analyses of Galpha-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. , 2004, Methods in enzymology.

[43]  S. Pattingre,et al.  Amino Acids Interfere with the ERK1/2-dependent Control of Macroautophagy by Controlling the Activation of Raf-1 in Human Colon Cancer HT-29 Cells* , 2003, The Journal of Biological Chemistry.

[44]  S. Tamiya,et al.  TGF-beta2-induced matrix modification and cell transdifferentiation in the human lens capsular bag. , 2002, Investigative ophthalmology & visual science.

[45]  I. M. Wormstone,et al.  Posterior capsule opacification: a cell biological perspective. , 2002, Experimental eye research.

[46]  R. Menapace,et al.  Capsular bending ring to prevent posterior capsule opacification: 2 year follow‐up , 2001, Journal of cataract and refractive surgery.

[47]  P. Davies,et al.  FGF: an autocrine regulator of human lens cell growth independent of added stimuli. , 2001, Investigative ophthalmology & visual science.

[48]  M R Dana,et al.  A systematic overview of the incidence of posterior capsule opacification. , 1998, Ophthalmology.

[49]  P. D. Davies,et al.  Thapsigargin-coated intraocular lenses inhibit human lens cell growth , 1997, Nature Medicine.

[50]  G Duncan,et al.  A study of human lens cell growth in vitro. A model for posterior capsule opacification. , 1996, Investigative ophthalmology & visual science.