Incentives of Using the Hydrodynamic Invariant and Sedimentation Parameter for the Study of Naturally- and Synthetically-Based Macromolecules in Solution

The interrelation of experimental rotational and translational hydrodynamic friction data as a basis for the study of macromolecules in solution represents a useful attempt for the verification of hydrodynamic information. Such interrelation originates from the basic development of colloid and macromolecular science and has proven to be a powerful tool for the study of naturally- and synthetically-based, i.e., artificial, macromolecules. In this tutorial review, we introduce this very basic concept with a brief historical background, the governing physical principles, and guidelines for anyone making use of it. This is because very often data to determine such an interrelation are available and it only takes a set of simple equations for it to be established. We exemplify this with data collected over recent years, focused primarily on water-based macromolecular systems and with relevance for pharmaceutical applications. We conclude with future incentives and opportunities for verifying an advanced design and tailored properties of natural/synthetic macromolecular materials in a dispersed or dissolved manner, i.e., in solution. Particular importance for the here outlined concept emanates from the situation that the classical scaling relationships of Kuhn–Mark–Houwink–Sakurada, most frequently applied in macromolecular science, are fulfilled, once the hydrodynamic invariant and/or sedimentation parameter are established. However, the hydrodynamic invariant and sedimentation parameter concept do not require a series of molar masses for their establishment and can help in the verification of a sound estimation of molar mass values of macromolecules.

[1]  O. Okatova,et al.  Hydrodynamic, molecular, and conformational characteristics of macromolecules of a random copolymer of N-Methyl-N-vinylacetamide and N-Methyl-N-vinylamine Hydrochloride , 2012, Russian Journal of Applied Chemistry.

[2]  S. V. Bushin,et al.  Hydrodynamic invariant of polymer molecules , 1984 .

[3]  A. Gubarev,et al.  Hydrodynamic behavior of quaternized chitosan at acidic and neutral pH , 2015, Journal of Polymer Research.

[4]  G. Pavlov,et al.  Molecular properties and electrostatic interactions of linear poly(allylamine hydrochloride) chains , 2006 .

[5]  H. Staudinger,et al.  Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution , 1922 .

[6]  Herman Rinde,et al.  THE ULTRA-CENTRIFUGE, A NEW INSTRUMENT FOR THE DETERMINATION OF SIZE AND DISTRIBUTION OF SIZE OF PARTICLE IN AMICROSCOPIC COLLOIDS , 1924 .

[7]  U. Schubert,et al.  Absolute characteristics and conformation of cationic polymers by hydrodynamic approaches: Poly(AEMA-co-MAEMA-co-DMAEMA)stat copolymers , 2017 .

[8]  O. Okatova,et al.  Inhomogeneity and conformational parameters of low-substituted carboxymethyl cellulose from analytical ultracentrifugation data , 1999 .

[9]  U. Schubert,et al.  POx as an Alternative to PEG? A Hydrodynamic and Light Scattering Study , 2018 .

[10]  A. V. Mikhailova,et al.  Conformational parameters of poly(N-methyl-N-vinylacetamide) molecules through the hydrodynamic characteristics studies. , 2010, Macromolecular bioscience.

[11]  Rolf Mülhaupt,et al.  Hermann Staudinger and the origin of macromolecular chemistry. , 2004, Angewandte Chemie.

[12]  G. Pavlov,et al.  Hydrodynamic properties of the fractions of mannan formed by Rhodotorula rubra yeast , 1992 .

[13]  G. Pavlov,et al.  Sedimentation, translational diffusion, and viscosity of lactosylated polyamidoamine dendrimers , 1999 .

[14]  V. D. Pautov,et al.  Conformational and dynamic characteristics of copolymers of N,N-dimethylaminoethyl methacrylate and 2-deoxy-2-methacrylamido-D-glucose , 2014, Polymer Science Series A.

[15]  U. Schubert,et al.  Molecular and structural analysis via hydrodynamic methods: Cationic poly(2-aminoethyl-methacrylate)s , 2017 .

[16]  O. Lamm,et al.  The determination of diffusion constants of proteins by a refractometric method. , 1936, The Biochemical journal.

[17]  S. Harding,et al.  Macromolecular conformation of chitosan in dilute solution: A new global hydrodynamic approach , 2009 .

[18]  H. Staudinger,et al.  Über hochpolymere Verbindungen, 33. Mitteilung: Beziehungen zwischen Viscosität und Molekulargewicht bei Poly‐styrolen , 1930 .

[19]  O. Okatova,et al.  Dimensions and conformations of macromolecules of N-methyl-N-vinylacetamide and N-methyl-N-vinylamine hydrochloride in solutions in a wide interval of ionic strength , 2017, Polymer Science Series C.

[20]  G. Pankova,et al.  Molecular mass characteristics and hydrodynamic and conformational properties of hyperbranched poly-L-lysines , 2009 .

[21]  G. Pavlov,et al.  The sedimentation parameter of linear polymer molecules in absence of excluded volume effects , 1988 .

[22]  A. Ogston,et al.  A boundary anomaly found in the ultracentrifugal sedimentation of mixtures , 1946 .

[23]  P. Flory,et al.  The Frictional Coefficient for Flexible Chain Molecules in Dilute Solution , 1952 .

[24]  N. Zakharova,et al.  Molecular and associative properties of N-vinylpyrrolidone copolymers with N-crotonoylaminocaproic acid in dilute solutions , 2017, Polymer Science, Series A.

[25]  M. Huggins,et al.  THE VISCOSITY OF DILUTE SOLUTIONS OF LONG-CHAIN MOLECULES, IV. DEPENDENCE ON CONCENTRATION , 1942 .

[26]  S. Harding,et al.  Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis , 2008 .

[27]  A. Gubarev,et al.  Conformational and hydrodynamic properties of the homopolymer of 2-deoxy-2-methacrylamido-D-glucose and its copolymers with acrylic acid and methacrylic acid , 2014, Polymer Science Series A.

[28]  V. D. Pautov,et al.  Conformation properties of poly(N,N-dimethylaminoethyl methacrylate) macromolecules in various solvents , 2012, Russian Journal of Applied Chemistry.

[29]  U. Schubert,et al.  Revisiting very disperse macromolecule populations in hydrodynamic and light scattering studies of sodium carboxymethyl celluloses. , 2020, Carbohydrate polymers.

[30]  H. Staudinger Über Isopren und Kautschuk , 1932 .

[31]  S. Hill,et al.  Molar mass and solution conformation of branched α(1 → 4), α(1 → 6) Glucans. Part I: Glycogens in water , 2008 .

[32]  H. Fujita,et al.  Triple Helix of Schizophyllum commune Polysaccharide in Dilute Solution. 3. Hydrodynamic Properties in Water , 1980 .

[33]  R. Fåhraeus,et al.  A NEW METHOD FOR THE DETERMINATION OF THE MOLECULAR WEIGHT OF THE PROTEINS , 1926 .

[34]  S. Harding,et al.  A comparison of molecular mass determination of hyaluronic acid using SEC/MALLS and sedimentation equilibrium , 2003, European Biophysics Journal.

[35]  N. P. Ivanova,et al.  Molecular Characteristics of Poly(methacrylamido d-Glucose)1 , 1996 .

[36]  K. E. Van Holde,et al.  The concentration dependence of the sedimentation constants of flexible macromolecules , 1954 .

[37]  H. Fujita Effects of a Concentration Dependence of the Sedimentation Coefficient in Velocity Ultracentrifugation , 1956 .

[38]  U. Schubert,et al.  Structure-property relationships via complementary hydrodynamic approaches: Poly(2-(dimethylamino)ethyl methacrylate)s , 2019, Polymer.

[39]  U. Schubert,et al.  Hyperbranched Poly(ethylene glycol) Copolymers: Absolute Values of the Molar Mass, Properties in Dilute Solution, and Hydrodynamic Homology , 2015 .

[40]  H. Fujita,et al.  Double-stranded helix of xanthan: dimensional and hydrodynamic properties in 0.1 M aqueous sodium chloride , 1984 .

[41]  S. Finet,et al.  Conformation of heparin studied with macromolecular hydrodynamic methods and X-ray scattering , 2003, European Biophysics Journal.

[42]  U. Schubert,et al.  Linear poly(ethylene imine)s: true molar masses, solution properties and conformation , 2017 .

[43]  Lisbeth Illum,et al.  Correlation of SEC/MALLS with ultracentrifuge and viscometric data for chitosans , 2003, European Biophysics Journal.

[44]  M. Huggins The Viscosity of Dilute Solutions of Long‐Chain Molecules. III. The Staudinger Viscosity Law , 1939 .

[45]  S. Harding,et al.  Dilute solution properties of lactosylated polyamidoamine dendrimers and their structural characteristics , 2001 .

[46]  Tobias C. Majdanski,et al.  Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites. , 2017, Analytical chemistry.

[47]  S. Harding,et al.  Dilute solution properties of carboxymethylchitins in high ionic-strength solvent , 1998 .

[48]  M. Hayes,et al.  Hydrodynamic characterisation of chitosan and its interaction with two polyanions: DNA and xanthan. , 2015, Carbohydrate polymers.

[49]  A. P. Khurchak,et al.  Molecular properties of modified chitosan containing a quaternary amino group , 2011 .

[50]  H. Fujita,et al.  Triple helix of Schizophyllum commune polysaccharide in dilute solution. 4. Light scattering and viscosity in dilute aqueous sodium hydroxide , 1981 .

[51]  O. Okatova,et al.  Sizes of Macromolecules of Copolymers of N-Methyl-N-Vinylacetamide and N-Methyl-N-Vinylamine Hydrochloride with Low Charge Linear Density , 2018, Polymer Science, Series A.

[52]  Trushar R. Patel,et al.  Application of novel analytical ultracentrifuge analysis to solutions of fungal mannans , 2016, European Biophysics Journal.

[53]  N. Yevlampieva,et al.  Protonated member of poly(diallylammonium) family: Hydrodynamic and conformational properties , 2018, International Journal of Polymer Analysis and Characterization.

[54]  Trushar R. Patel,et al.  Molecular flexibility of methylcelluloses of differing degree of substitution by combined sedimentation and viscosity analysis. , 2008, Macromolecular bioscience.

[55]  Trushar R. Patel,et al.  Global conformation analysis of irradiated xyloglucans , 2008 .

[56]  G. Pavlov,et al.  Hydrodynamic characteristics and equilibrium rigidity of pullulan molecules. , 1994, International journal of biological macromolecules.

[57]  P. Wyatt Light scattering and the absolute characterization of macromolecules , 1993 .

[58]  D. Goring,et al.  Hydrodynamic studies on sodium carboxymethyl cellulose in aqueous solutions , 1962 .

[59]  G. Pavlov,et al.  Velocity sedimentation of water-soluble methyl cellulose , 1995 .

[60]  Elmer O. Kraemer,et al.  MOLECULAR WEIGHTS OF CELLULOSES AND CELLULOSE DERIVATIVES , 1938 .

[61]  E. W. Meijer,et al.  Hydrodynamic properties of carbohydrate-coated dendrimers , 1999 .

[62]  U. Schubert,et al.  Unexpected radical polymerization behavior of oligo(2-ethyl-2-oxazoline) macromonomers , 2012 .

[63]  P. Schuck,et al.  Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. , 2000, Biophysical journal.

[64]  I. A. Nemchinov,et al.  Aspects of the degradation of water-soluble cellulose derivatives in the course of oxidation by trivalent cobalt salts☆ , 1991 .

[65]  O. Okatova,et al.  Diffusion and sedimentation of monosubstituted carboxymethyl cellulose in deca-diluted aqueous cadoxene , 1991 .

[66]  Conformational properties of biocompatible poly(2-ethyl-2-oxazoline)s in phosphate buffered saline , 2018 .

[67]  G. Pavlov,et al.  Hydrodynamic properties of poly(1-vinyl-2-pyrrolidone) molecules in dilute solution , 1990 .

[68]  H. Cölfen,et al.  Hydrodynamic studies on chitosans in aqueous solution. , 2001 .

[69]  S. Harding,et al.  The effect of the degree of esterification on the hydrodynamic properties of citrus pectin , 2000 .

[70]  I. N. Shtennikova,et al.  Diffusion, sedimentation and flow birefringence in solutions of monosubstituted carboxymethylcellulose in cadoxene☆ , 1987 .

[71]  V. D. Pautov,et al.  Structural and dynamic characteristics of thermo- and pH-sensitive copolymers of 2-(diethylamino)ethyl methacrylate and 2-deoxy-2-methacrylamido-d-glucose , 2015 .

[72]  G. Pavlov,et al.  Sedimentation parameter of linear polymers , 1995 .

[73]  S. Wood,et al.  An analytical ultracentrifugation based study on the conformation of lambda carrageenan in aqueous solution. , 2013, Carbohydrate polymers.

[74]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[75]  S. Didenko,et al.  Hydrodynamic properties and the shape of the molecules of the polysaccharide ficoll-400 in solution , 1986 .