Earlier sea-ice melt extends the oligotrophic summer period in the Barents Sea with low algal biomass and associated low vertical flux

[1]  I. Hanssen‐Bauer,et al.  Exceptional warming over the Barents area , 2022, Scientific Reports.

[2]  B. Edvardsen,et al.  Seasonal Cruise Q3 , 2022, The Nansen Legacy Report Series.

[3]  T. Krumpen,et al.  Sea-ice derived meltwater stratification slows the biological carbon pump: results from continuous observations , 2021, Nature Communications.

[4]  K. Assmann,et al.  Physical manifestations and ecological implications of Arctic Atlantification , 2021, Nature Reviews Earth & Environment.

[5]  A. Dabrowska,et al.  When a Year Is Not Enough: Further Study of the Seasonality of Planktonic Protist Communities Structure in an Ice-Free High Arctic Fjord (Adventfjorden, West Spitsbergen) , 2021, Water.

[6]  B. Sorrell,et al.  An under-ice bloom of mixotrophic haptophytes in low nutrient and freshwater-influenced Arctic waters , 2021, Scientific reports.

[7]  T. Krumpen,et al.  Carbon Export in the Seasonal Sea Ice Zone North of Svalbard From Winter to Late Summer , 2021, Frontiers in Marine Science.

[8]  K. Assmann,et al.  Suggested water mass definitions for the central and northern Barents Sea, and the adjacent Nansen Basin , 2020, The Nansen Legacy Report Series.

[9]  K. Tait,et al.  Phosphorus dynamics in the Barents Sea , 2020, Limnology and Oceanography.

[10]  M. Giordano,et al.  Interannual variability of Emiliania huxleyi blooms in the Barents Sea: In situ data 2014-2018. , 2020, Marine pollution bulletin.

[11]  A. Dabrowska,et al.  Planktonic Protists of the Eastern Nordic Seas and the Fram Strait: Spatial Changes Related to Hydrography During Early Summer , 2020, Frontiers in Marine Science.

[12]  H. Bouman,et al.  Bio-optical evidence for increasing Phaeocystis dominance in the Barents Sea , 2020, Philosophical Transactions of the Royal Society A.

[13]  T. Smyth,et al.  Increasing picocyanobacteria success in shelf waters contributes to long‐term food web degradation , 2020, Global change biology.

[14]  K. Arrigo,et al.  Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea , 2020, Progress in Oceanography.

[15]  Ø. Skagseth,et al.  Reduced efficiency of the Barents Sea cooling machine , 2020, Nature Climate Change.

[16]  T. Thingstad How trophic cascades and photic zone nutrient content interact to generate basin-scale differences in the microbial food web , 2020, ICES Journal of Marine Science.

[17]  L. C. Stige,et al.  Associations among temperature, sea ice and phytoplankton bloom dynamics in the Barents Sea , 2020 .

[18]  P. Makarevich,et al.  Phytoplankton communities of the Barents Sea frontal zone during the early spring period , 2020, IOP Conference Series: Earth and Environmental Science.

[19]  K. Arrigo,et al.  Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean , 2020, Elementa: Science of the Anthropocene.

[20]  S. Kameyama,et al.  Impacts of Temperature, CO2, and Salinity on Phytoplankton Community Composition in the Western Arctic Ocean , 2020, Frontiers in Marine Science.

[21]  A. Kostianoy,et al.  Seasonal and Interannual Variability of the Barents Sea Temperature , 2019, Ecologica Montenegrina.

[22]  M. Vernet,et al.  Influence of Phytoplankton Advection on the Productivity Along the Atlantic Water Inflow to the Arctic Ocean , 2019, Front. Mar. Sci..

[23]  Yu Wang,et al.  Phytoplankton communities and size-fractioned chlorophyll a in newly opened summer waters of the central Arctic Ocean , 2019, Marine Ecology Progress Series.

[24]  F. Cottier,et al.  Phytoplankton Seasonal Dynamics in Kongsfjorden, Svalbard and the Adjacent Shelf , 2019, The Ecosystem of Kongsfjorden, Svalbard.

[25]  T. Eldevik,et al.  The Role of Atlantic Heat Transport in Future Arctic Winter Sea Ice Loss , 2019, Journal of Climate.

[26]  T. Richardson Mechanisms and Pathways of Small-Phytoplankton Export from the Surface Ocean. , 2019, Annual review of marine science.

[27]  W. Meier,et al.  The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic , 2018, Annals of the New York Academy of Sciences.

[28]  Torbjørn Eltoft,et al.  Remote Sensing of Water Quality Parameters over Lake Balaton by Using Sentinel-3 OLCI , 2018, Water.

[29]  Kate E. Lowry,et al.  Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation , 2018, Limnology and Oceanography.

[30]  D. Stoecker,et al.  Mixotrophic Plankton in the Polar Seas: A Pan-Arctic Review , 2018, Front. Mar. Sci..

[31]  K. Frey,et al.  Unraveling Phytoplankton Community Dynamics in the Northern Chukchi Sea Under Sea‐Ice‐Covered and Sea‐Ice‐Free Conditions , 2018, Geophysical Research Letters.

[32]  R. Ingvaldsen,et al.  Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import , 2018, Nature Climate Change.

[33]  L. Oziel,et al.  Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic , 2018, Global change biology.

[34]  J. Matthiessen,et al.  Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom , 2018, Scientific reports.

[35]  M. Greenacre,et al.  Fast reactivation of photosynthesis in arctic phytoplankton during the polar night1 , 2018, Journal of phycology.

[36]  P. Tortell,et al.  Compensation of ocean acidification effects in Arctic phytoplankton assemblages , 2018, Nature Climate Change.

[37]  Hanna M. Kauko,et al.  Algal Hot Spots in a Changing Arctic Ocean: Sea-Ice Ridges and the Snow-Ice Interface , 2018, Front. Mar. Sci..

[38]  C. Hoppe,et al.  Resilience by diversity: Large intraspecific differences in climate change responses of an Arctic diatom , 2018 .

[39]  D. Freese,et al.  Feeding by Calanus glacialis in a high arctic fjord: potential seasonal importance of alternative prey , 2017 .

[40]  M. Årthun,et al.  Toward an ice‐free Barents Sea , 2017 .

[41]  J. Tison,et al.  Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea , 2017 .

[42]  Fabrizio D'Ortenzio,et al.  Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean , 2017 .

[43]  A. V. Romanenko,et al.  Viruses, bacteria, and heterotrophic nanoflagellates in Laptev Sea plankton , 2016, Oceanology.

[44]  M. Kahru,et al.  Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean , 2016, Biology Letters.

[45]  R. Sandaa,et al.  Synechococcus in the Atlantic Gateway to the Arctic Ocean , 2016, Front. Mar. Sci..

[46]  T. Garlan,et al.  A survey of the summer coccolithophore community in the western Barents Sea , 2016 .

[47]  A. D. Barton,et al.  Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities , 2016, Proceedings of the National Academy of Sciences.

[48]  E. Nöthig,et al.  Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012 , 2016, PloS one.

[49]  L. Oziel,et al.  The Barents Sea frontal zones and water masses variability (1980–2011) , 2016 .

[50]  J. Wiktor,et al.  The Gymnodinium and Gyrodinium (Dinoflagellata: Gymnodiniaceae) of the West Spitsbergen waters (1999–2010): biodiversity and morphological description of unidentified species , 2016, Polar Biology.

[51]  Ling Lin,et al.  Ecophysiology of picophytoplankton in different water masses of the northern Bering Sea , 2016, Polar Biology.

[52]  R. Gradinger,et al.  The diversity, abundance and fate of ice algae and phytoplankton in the Bering Sea , 2016, Polar Biology.

[53]  S. Guikema,et al.  Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2 , 2015, Science.

[54]  L. Anderson,et al.  Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean , 2015 .

[55]  K. Arrigo,et al.  Continued increases in Arctic Ocean primary production , 2015 .

[56]  N. Lundholm,et al.  Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus , 2015 .

[57]  Ling Lin,et al.  Dominance of picophytoplankton in the newly open surface water of the central Arctic Ocean , 2015, Polar Biology.

[58]  Astrid Bracher,et al.  Summertime plankton ecology in Fram Strait—a compilation of long- and short-term observations , 2015 .

[59]  C. Duarte,et al.  Interactive effect of temperature and CO2 increase in Arctic phytoplankton , 2014, Front. Mar. Sci..

[60]  K. Piwosz,et al.  The effect of inter-annual Atlantic water inflow variability on the planktonic protist community structure in the West Spitsbergen waters during the summer , 2014 .

[61]  M. Steinacher,et al.  A glimpse into the future composition of marine phytoplankton communities , 2014, Front. Mar. Sci..

[62]  K. Arrigo,et al.  Productivity in the Barents Sea - Response to Recent Climate Variability , 2014, PloS one.

[63]  S. Phinn,et al.  A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans , 2014 .

[64]  Are Olsen,et al.  Modelling ocean acidification in the Nordic and Barents Seas in present and future climate , 2014 .

[65]  C. Brown,et al.  Poleward expansion of the coccolithophore Emiliania huxleyi , 2014 .

[66]  M. Moline,et al.  Optical impact of an Emiliania huxleyi bloom in the frontal region of the Barents Sea , 2014 .

[67]  T. Mock,et al.  Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment , 2014, Biology.

[68]  G. Hartwig THE ARCTIC SEAS , 2014 .

[69]  M. Perry,et al.  Major contribution of diatom resting spores to vertical flux in the sub-polar North Atlantic , 2013 .

[70]  Camille Li,et al.  THE ROLE OF THE BARENTS SEA IN THE ARCTIC CLIMATE SYSTEM , 2013 .

[71]  Mark Hebblewhite,et al.  Ecological Consequences of Sea-Ice Decline , 2013, Science.

[72]  Carlos M Duarte,et al.  Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming , 2013, Global change biology.

[73]  G. Hunt,et al.  The Barents and Chukchi Seas: Comparison of two Arctic shelf ecosystems , 2013 .

[74]  J. Søreide,et al.  Effect of light and food on the metabolism of the Arctic copepod Calanus glacialis , 2013, Polar Biology.

[75]  S. Hendricks,et al.  Changes in Arctic sea ice result in increasing light transmittance and absorption , 2012 .

[76]  David M. Karl,et al.  Picophytoplankton biomass distribution in the global ocean , 2012 .

[77]  Øystein Skagseth,et al.  Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat , 2012 .

[78]  Bryan A. Franz,et al.  Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three‐band reflectance difference , 2012 .

[79]  P. Wassmann,et al.  Future Arctic Ocean Seasonal Ice Zones and Implications for Pelagic-Benthic Coupling , 2011 .

[80]  K. Drinkwater The influence of climate variability and change on the ecosystems of the Barents Sea and adjacent waters: Review and synthesis of recent studies from the NESSAS Project , 2011 .

[81]  T. Kiørboe How zooplankton feed: mechanisms, traits and trade‐offs , 2011, Biological reviews of the Cambridge Philosophical Society.

[82]  S. Doney,et al.  Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light , 2010 .

[83]  G. Hasle,et al.  Fragilariopsis (Bacillariophyceae) of the Northern Hemisphere – morphology, taxonomy, phylogeny and distribution, with a description of F. pacifica sp. nov. , 2010 .

[84]  M. Degerlund,et al.  Main Species Characteristics of Phytoplankton Spring Blooms in NE Atlantic and Arctic Waters (68–80° N) , 2010 .

[85]  A. Lopez-Urrutia,et al.  Increasing importance of small phytoplankton in a warmer ocean , 2010 .

[86]  Zoe V. Finkel,et al.  Phytoplankton in a changing world: cell size and elemental stoichiometry , 2010 .

[87]  E. Carmack,et al.  Smallest Algae Thrive As the Arctic Ocean Freshens , 2009, Science.

[88]  C. Ashjian,et al.  Mesozooplankton prey preference and grazing impact in the Western Arctic Ocean , 2009 .

[89]  C. McClain,et al.  Environmental factors controlling the Barents Sea spring‐summer phytoplankton blooms , 2009 .

[90]  J. Tremblay,et al.  The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change , 2009 .

[91]  H. Hop,et al.  Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002 , 2009, Polar Biology.

[92]  Else Nøst Hegseth,et al.  Intrusion and blooming of Atlantic phytoplankton species in the high Arctic , 2008 .

[93]  K. Hobson,et al.  Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region , 2008 .

[94]  Dag Slagstad,et al.  Impact of climatic change on the biological production in the Barents Sea , 2008 .

[95]  Giacomo R. DiTullio,et al.  Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea , 2007 .

[96]  Elena Litchman,et al.  The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. , 2007, Ecology letters.

[97]  K. Drinkwater,et al.  An overview of the ecosystems of the Barents and Norwegian Seas and their response to climate variability , 2007 .

[98]  P. Burkill,et al.  Flow cytometric enumeration of DNA-stained oceanic planktonic protists , 2006 .

[99]  G. Gabrielsen,et al.  Food webs and carbon flux in the Barents Sea , 2006 .

[100]  A. Gabric,et al.  The satellite-derived distribution of chlorophyll-a and its relation to ice cover, radiation and sea surface temperature in the Barents Sea , 2006, Polar Biology.

[101]  G. Hays,et al.  Climate change and marine plankton. , 2005, Trends in ecology & evolution.

[102]  Józef Wiktor,et al.  Differences in taxonomic composition of summer phytoplankton in two fjords of West Spitsbergen, Svalbard , 2005 .

[103]  T. Smyth,et al.  Time series of coccolithophore activity in the Barents Sea, from twenty years of satellite imagery , 2004 .

[104]  D. Notz,et al.  Impact of underwater‐ice evolution on Arctic summer sea ice , 2003 .

[105]  F. Rey,et al.  Variations in hydrography, nutrients and chlorophyll a in the marginal ice-zone and the central Barents Sea , 2002 .

[106]  K. Olli,et al.  Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea , 2002 .

[107]  P. Wassmann,et al.  Seasonal variation and spatial distribution of phyto- and protozooplankton in the central Barents Sea , 2002 .

[108]  Else Nøst Hegseth,et al.  Spatial variability of chlorophyll-a in the Marginal Ice Zone of the Barents Sea, with relations to sea ice and oceanographic conditions , 2002 .

[109]  T. Vinje Anomalies and Trends of Sea-Ice Extent and Atmospheric Circulation in the Nordic Seas during the Period 1864–1998 , 2001 .

[110]  T. Furevik Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents Seas : 1980-1996 , 2001 .

[111]  J. B. Ørbæk,et al.  Physical and ecological processes in the marginal ice zone of the northern Barents Sea during the summer melt period , 2000 .

[112]  C. Quillfeldt Common Diatom Species in Arctic Spring Blooms: Their Distribution and Abundance , 2000 .

[113]  T. Nielsen,et al.  On the trophic coupling between protists and copepods in arctic marine ecosystems , 2000 .

[114]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[115]  U. Schauer,et al.  Spatial variability of phytoplankton, nutrients and new production estimates in the waters around Svalbard , 2000 .

[116]  R. B. Pearce,et al.  The “Fall dump” — a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux , 2000 .

[117]  Helmut Hillebrand,et al.  BIOVOLUME CALCULATION FOR PELAGIC AND BENTHIC MICROALGAE , 1999 .

[118]  B. Ådlandsvik,et al.  Water fluxes through the Barents Sea , 1997 .

[119]  E. Sherr,et al.  Heterotrophic protists in the Central Arctic Ocean , 1997 .

[120]  James H. Miller,et al.  The Barents Sea Polar Front in summer , 1996 .

[121]  R. J. Thompson,et al.  THE MARINE MIXOTROPH DINOBRYON BALTICUM (CHRYSOPHYCEAE): PHAGOTROPHY AND SURVIVAL IN A COLD OCEAN 1 , 1995 .

[122]  H. Eicken Structure of under-ice melt ponds in the central Arctic and their effect on, the sea-ice cover , 1994 .

[123]  D. L. Aksnes,et al.  Silicate as regulating nutrient in phytoplankton competition , 1992 .

[124]  H. Loeng,et al.  Features of the physical oceanographic conditions of the Barents Sea , 1991 .

[125]  E. E. Syvertsen Ice algae in the Barents Sea: types of assemblages, origin, fate and role in the ice-edge phytoplankton bloom , 1991 .

[126]  C. Lancelot,et al.  Calculating carbon biomass ofPhaeocystis sp. from microscopic observations , 1990 .

[127]  K. Y. Bφrshiem Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawatr. , 1987 .

[128]  D. Anderson,et al.  THECATE HETEROPHIC DINOFLAGELLATES: FEEDING BEHAVIOR AND MECHANISMS 1 , 1986 .

[129]  O. Holm‐Hansen,et al.  Chlorophyll a Determination: Improvements in Methodology , 1978 .

[130]  P. R. Sloan,et al.  RELATIONSHIP BETWEEN CARBON CONTENT, CELL VOLUME, AND AREA IN PHYTOPLANKTON , 1966 .

[131]  M. M. Mullin SOME FACTORS AFFECTING THE FEEDING OF MARINE COPEPODS OF THE GENUS CALANUS1 , 1963 .

[132]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .