Misbehaving router detection in link-state routing for wireless mesh networks

In this paper, we address the problem of detecting misbehaving routers in wireless mesh networks and avoiding them when selecting routes. We assume that link-state routing is used, and we essentially propose a reputation system, where trusted gateway nodes compute Node Trust Values for the routers, which are fed back into the system and used in the route selection procedure. The computation of the Node Trust Values is based on packet counters maintained in association with each route and reported to the gateways by the routers in a regular manner. The feedback mechanism is based on limited scope flooding. The received Node Trust Values concerning a given router are aggregated, and the aggregate trust value of the router determines the probability with which that router is kept in the topology graph used for route computation. Hence, less trusted routers are excluded from the topology graph with higher probability, while the route selection still runs on a weighted graph (where the weights are determined by the announced link qualities), and it does not need to be changed. We evaluated the performance of our solution by means of simulations. The results show that our proposed mechanism can detect misbehaving routers reliably, and thanks to the feedback and the exclusion of the accused nodes from the route selection, we can decrease the number of packets dropped due to router misbehavior considerably. At the same time, our mechanism only slightly increases the average route length.