Direct and Inverse Eigenvalue Problems for Diagonal-Plus-Semiseparable Matrices

In this paper we study both direct and inverse eigenvalue problems for diagonal-plus-semiseparable (dpss) matrices. In particular, we show that the computation of the eigenvalues of a symmetric dpss matrix can be reduced by a congruence transformation to solving a generalized symmetric definite tridiagonal eigenproblem. Using this reduction, we devise a set of recurrence relations for evaluating the characteristic polynomial of a dpss matrix in a stable way at a linear time. This in turn allows us to apply divide-and-conquer eigenvalue solvers based on functional iterations directly to dpss matrices without performing any preliminary reduction into a tridiagonal form. In the second part of the paper, we exploit the structural properties of dpss matrices to solve the inverse eigenvalue problem of reconstructing a symmetric dpss matrix from its spectrum and some other informations. Finally, applications of our results to the computation of a QR factorization of a Cauchy matrix with real nodes are provided.

[1]  N. Mastronardi,et al.  Fast and Stable Reduction of Diagonal Plus Semi-Separable Matrices to Tridiagonal and Bidiagonal Form , 2001 .

[2]  S. Chandrasekaran,et al.  Fast and stable eigendecomposition of symmetric banded plus semi-separable matrices , 2000 .

[3]  P. Rózsa,et al.  On the inverse of band matrices , 1987 .

[4]  Martin H. Gutknecht,et al.  Lectures On Numerical Mathematics , 1990 .

[5]  Sabine Van Huffel,et al.  Fast and stable two‐way algorithm for diagonal plus semi‐separable systems of linear equations , 2001 .

[6]  Dirk P. Laurie Accurate recovery of recursion coe cients from Gaussian quadrature formulas , 1999 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Israel Koltracht,et al.  Integral Equation Method for the Continuous Spectrum Radial Schrödinger Equation , 1997 .

[9]  Reinhard Nabben,et al.  Decay Rates of the Inverse of Nonsymmetric Tridiagonal and Band Matrices , 1999, SIAM J. Matrix Anal. Appl..

[10]  Carlos F. Borges,et al.  A Parallel Divide and Conquer Algorithm for the Generalized Real Symmetric Definite Tridiagonal Eigenproblem , 1993 .

[11]  Dario Fasino,et al.  A Lanczos‐type algorithm for the QR factorization of regular Cauchy matrices , 2002, Numer. Linear Algebra Appl..

[12]  Pál Rózsa,et al.  On the Inverse of Block Tridiagonal Matrices with Applications to the Inverses of Band Matrices and Block Band Matrices , 1989 .

[13]  Luca Gemignani,et al.  Iteration schemes for the divide-and-conquer eigenvalue solver , 1994 .

[14]  Dario Fasino,et al.  Structural and computational properties of possibly singular semiseparable matrices , 2002 .

[15]  Κ. Vince Fernando,et al.  Differential qd algorithms , 1993 .

[16]  F. R. Gantmakher,et al.  Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme , 1960 .

[17]  Dario Fasino,et al.  Orthogonal Rational Functions and Structured Matrices , 2005, SIAM J. Matrix Anal. Appl..

[18]  Israel Gohberg,et al.  Fast inversion algorithms for diagonal plus semiseparable matrices , 1997 .

[19]  W. Gragg,et al.  The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .

[20]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .

[21]  Lothar Reichel,et al.  Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation , 1991 .

[22]  G. Golub,et al.  A survey of matrix inverse eigenvalue problems , 1986 .

[23]  Luc Wuytack An algorithm for rational interpolation similar to theqd-algorithm , 1972 .