Evaluating Classifiers by Means of Test Data with Noisy Labels
暂无分享,去创建一个
[1] Ethem Alpaydin,et al. MultiStage Cascading of Multiple Classifiers: One Man's Noise is Another Man's Data , 2000, ICML.
[2] Tom Michael Mitchell,et al. Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.
[3] Eleazar Eskin,et al. Detecting Errors within a Corpus using Anomaly Detection , 2000, ANLP.
[4] David G. Stork,et al. Building intelligent systems one e-citizen at a time , 1999, IEEE Intell. Syst..
[5] Avrim Blum,et al. The Bottleneck , 2021, Monopsony Capitalism.
[6] Padhraic Smyth,et al. Bounds on the mean classification error rate of multiple experts , 1996, Pattern Recognit. Lett..
[7] Ricardo Baeza-Yates,et al. Information Retrieval: Data Structures and Algorithms , 1992 .
[8] Tommi S. Jaakkola,et al. Kernel Expansions with Unlabeled Examples , 2000, NIPS.
[9] Chuck P. Lam,et al. Open Mind Animals : Insuring the quality of data openly contributed over the World Wide Web , 2000 .
[10] Venkata Subramaniam,et al. Information Retrieval: Data Structures & Algorithms , 1992 .
[11] David G. Stork,et al. Pattern Classification , 1973 .