Bivariate quantile smoothing splines
暂无分享,去创建一个
Stephen Portnoy | Pin T. Ng | Xuming He | S. Portnoy | Xuming He | X. He | P. Ng | P. Ng
[1] P. Shi,et al. Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .
[2] Xuming He,et al. Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .
[3] Stephen Portnoy,et al. Local asymptotics for quantile smoothing splines , 1997 .
[4] Larry L. Schumaker,et al. Bivariate Natural Spline Smoothing , 1985 .
[5] E. Portnoy. Bivariate Schuette Graduation , 1994 .
[6] C. J. Stone,et al. The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .
[7] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[8] G. Wahba,et al. A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .
[9] B. Silverman,et al. Nonparametric regression and generalized linear models , 1994 .
[10] J. G. Evans,et al. Postoptimal Analyses, Parametric Programming, and Related Topics , 1979 .
[11] Wolfgang Härdle,et al. Applied Nonparametric Regression: The kernel method , 1990 .
[12] Joseph G. Ecker,et al. Postoptimal analyses, parametric programming, and related topics: McGraw-Hill, Düsseldorf, 1979, xvii + 380 pages, DM 104.- , 1981 .
[13] W. Cleveland,et al. Computational methods for local regression , 1991 .
[14] P. K. Bhattacharya,et al. Kernel and Nearest-Neighbor Estimation of a Conditional Quantile , 1990 .
[15] Pin T. Ng,et al. Quantile smoothing splines , 1994 .
[16] Smooth nonparametric estimation of the quantile function , 1990 .
[17] D. W. Scott,et al. The L 1 Method for Robust Nonparametric Regression , 1994 .
[18] G. Wahba,et al. Smoothing Spline ANOVA with Component-Wise Bayesian “Confidence Intervals” , 1993 .
[19] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[20] Nonparametric regression M-quantiles , 1989 .
[21] Donald R. Schuette. A LINEAR PROGRAMMING APPROACH TO GRADUATION , 1978 .
[22] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[23] W. Härdle. Applied Nonparametric Regression , 1991 .
[24] Xiaotong Shen. ON THE METHOD OF PENALIZATION , 1998 .
[25] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[26] J. Freidman,et al. Multivariate adaptive regression splines , 1991 .
[27] Pin T. Ng. An algorithm for quantile smoothing splines , 1996 .
[28] Grace Wahba,et al. Spline Models for Observational Data , 1990 .
[29] R. Koenker,et al. Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .
[30] H. White. Nonparametric Estimation of Conditional Quantiles Using Neural Networks , 1990 .
[31] Probal Chaudhuri,et al. Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .
[32] Larry L. Schumaker,et al. On Generalized Cross Validation for Tensor Smoothing Splines , 1990, SIAM J. Sci. Comput..
[33] C. J. Stone,et al. Asymptotics for Doubly Flexible Logspline Response Models , 1991 .
[34] Richard H. Bartels,et al. Linearly Constrained Discrete , 1980 .