Bivariate quantile smoothing splines

It has long been recognized that the mean provides an inadequate summary whereas the set of quantiles can supply a more complete description of a sample. We introduce bivariate quantile smoothing splines, which belong to the space of bilinear tensor product splines, as nonparametric estimators for the conditional quantile functions in a two‐dimensional design space. The estimators can be computed by using standard linear programming techniques and can further be used as building‐blocks for conditional quantile estimations in higher dimensions. For moderately large data sets, we recommend penalized bivariate B‐splines as approximate solutions. We use real and simulated data to illustrate the methodology proposed.

[1]  P. Shi,et al.  Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .

[2]  Xuming He,et al.  Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .

[3]  Stephen Portnoy,et al.  Local asymptotics for quantile smoothing splines , 1997 .

[4]  Larry L. Schumaker,et al.  Bivariate Natural Spline Smoothing , 1985 .

[5]  E. Portnoy Bivariate Schuette Graduation , 1994 .

[6]  C. J. Stone,et al.  The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[9]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[10]  J. G. Evans,et al.  Postoptimal Analyses, Parametric Programming, and Related Topics , 1979 .

[11]  Wolfgang Härdle,et al.  Applied Nonparametric Regression: The kernel method , 1990 .

[12]  Joseph G. Ecker,et al.  Postoptimal analyses, parametric programming, and related topics: McGraw-Hill, Düsseldorf, 1979, xvii + 380 pages, DM 104.- , 1981 .

[13]  W. Cleveland,et al.  Computational methods for local regression , 1991 .

[14]  P. K. Bhattacharya,et al.  Kernel and Nearest-Neighbor Estimation of a Conditional Quantile , 1990 .

[15]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[16]  Smooth nonparametric estimation of the quantile function , 1990 .

[17]  D. W. Scott,et al.  The L 1 Method for Robust Nonparametric Regression , 1994 .

[18]  G. Wahba,et al.  Smoothing Spline ANOVA with Component-Wise Bayesian “Confidence Intervals” , 1993 .

[19]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[20]  Nonparametric regression M-quantiles , 1989 .

[21]  Donald R. Schuette A LINEAR PROGRAMMING APPROACH TO GRADUATION , 1978 .

[22]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[23]  W. Härdle Applied Nonparametric Regression , 1991 .

[24]  Xiaotong Shen ON THE METHOD OF PENALIZATION , 1998 .

[25]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[26]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[27]  Pin T. Ng An algorithm for quantile smoothing splines , 1996 .

[28]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[29]  R. Koenker,et al.  Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .

[30]  H. White Nonparametric Estimation of Conditional Quantiles Using Neural Networks , 1990 .

[31]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[32]  Larry L. Schumaker,et al.  On Generalized Cross Validation for Tensor Smoothing Splines , 1990, SIAM J. Sci. Comput..

[33]  C. J. Stone,et al.  Asymptotics for Doubly Flexible Logspline Response Models , 1991 .

[34]  Richard H. Bartels,et al.  Linearly Constrained Discrete , 1980 .