Geologic context of proposed chloride‐bearing materials on Mars

[1] We use Thermal Emission Imaging System (THEMIS) data to identify and characterize the global distribution of distinct materials interpreted to contain chloride salts on the Martian surface. Previously mapped global geochemical and physical properties are used in concert with thermophysical and morphological observations to assess the materials' local and regional characteristics. The results of our survey have expanded the characterization of the materials from ∼200 to ∼640 distinct sites dispersed throughout low-albedo Noachian- and Hesperian-aged terrains. Our survey also shows that the materials are detected in locally thermophysically distinct terrains and display a range of morphologies. Topography indicates that the majority of the materials occur in local lows, although crosscutting relationships indicate that some sites are located in “geologic windows” implying that the materials may be older than the terrains in which they are situated. Once exposed, the materials appear to undergo erosion, which may be the reason we do not observe large laterally extensive materials at the surface. The materials are predominantly local in nature, yet their prevalence across the southern highlands suggests that they represent one or more globally ubiquitous processes. We consider a number of formation hypotheses but find that most observations are consistent with formation via ponding of surface runoff or groundwater upwelling, although efflorescence and hydrothermal activity may also be possible in some locales. The materials' inferred ages suggest that the conditions that enabled the deposition of the materials persisted for up to 1 billion years.

[1]  Brian M. Hynek,et al.  Updated global map of Martian valley networks and implications for climate and hydrologic processes , 2010 .

[2]  B. Hynek,et al.  Ancient ocean on Mars supported by global distribution of deltas and valleys , 2010 .

[3]  M. Zuber,et al.  Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra , 2010 .

[4]  T. Lowenstein,et al.  How do prokaryotes survive in fluid inclusions in halite for 30 k.y. , 2009 .

[5]  G. Swayze,et al.  Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region , 2009 .

[6]  S. Squyres,et al.  Diverse aqueous environments on ancient Mars revealed in the southern highlands , 2009 .

[7]  Jeffrey S. Kargel,et al.  Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars , 2009 .

[8]  P. Christensen,et al.  A model of thermal conductivity for planetary soils: 2. Theory for cemented soils , 2009 .

[9]  B. Hynek,et al.  Roaming zones of precipitation on ancient Mars as recorded in valley networks , 2009 .

[10]  Joshua L. Bandfield,et al.  Effects of surface roughness and graybody emissivity on martian thermal infrared spectra , 2009 .

[11]  R. Barbieri,et al.  Astrobiological significance of the sabkha life and environments of southern Tunisia , 2009 .

[12]  Kenneth L. Tanaka,et al.  Progress in Global Geologic Mapping of Mars , 2009 .

[13]  R. Clark,et al.  Clay and Sulfate-bearing Rocks in a Stratigraphic Sequence in Gale Crater , 2009 .

[14]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[15]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[16]  J. Head,et al.  Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology , 2008 .

[17]  C. Weitz,et al.  Opaline silica in young deposits on Mars , 2008 .

[18]  V. Hamilton,et al.  Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars , 2008 .

[19]  P. Christensen,et al.  Surface and crater‐exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products , 2008 .

[20]  R. Clark,et al.  Phyllosilicate and sulfate‐hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars , 2008 .

[21]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[22]  V. Hamilton,et al.  A study of low‐albedo deposits within Amazonis Planitia craters: Evidence for locally derived ultramafic to mafic materials , 2008 .

[23]  M. Zuber,et al.  The Borealis basin and the origin of the martian crustal dichotomy , 2008, Nature.

[24]  William H. Farrand,et al.  Hydrothermal origin of halogens at Home Plate, Gusev Crater , 2008 .

[25]  A. Knoll,et al.  Water Activity and the Challenge for Life on Early Mars , 2008, Science.

[26]  Jeffrey R. Johnson,et al.  Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars , 2008 .

[27]  Victoria E. Hamilton,et al.  Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data , 2008 .

[28]  J. Head,et al.  The timing of martian valley network activity : Constraints from buffered crater counting , 2008 .

[29]  D. W. Powers,et al.  Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets. , 2008, Astrobiology.

[30]  M. M. Osterloo,et al.  Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.

[31]  Richard D. Starr,et al.  Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars , 2007 .

[32]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[33]  R. Greeley,et al.  Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province , 2007 .

[34]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .

[35]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[36]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[37]  Richard D. Starr,et al.  Variations in K/Th on Mars , 2007 .

[38]  Richard D. Starr,et al.  Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS , 2007 .

[39]  J. Bandfield,et al.  Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data , 2007 .

[40]  P. Christensen,et al.  High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications , 2006 .

[41]  V. Hamilton,et al.  Evidence for locally derived, ultramafic intracrater materials in Amazonis Planitia, Mars , 2006 .

[42]  L. Marinangeli,et al.  Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications , 2006 .

[43]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[44]  Jeffrey R. Johnson,et al.  Evidence for Halite at Meridiani Planum , 2006 .

[45]  J. Bandfield Extended surface exposures of granitoid compositions in Syrtis Major, Mars , 2006 .

[46]  S. McLennan,et al.  Chemical divides and evaporite assemblages on Mars , 2006 .

[47]  K. Wohletz,et al.  Impact origin of sediments at the Opportunity landing site on Mars , 2005, Nature.

[48]  K. Harrison,et al.  Groundwater‐controlled valley networks and the decline of surface runoff on early Mars , 2005 .

[49]  Alan D. Howard,et al.  An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 2. Increased Runoff and Paleolake Development , 2005 .

[50]  Alan D. Howard,et al.  An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits , 2005 .

[51]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[52]  D. Mitchell,et al.  Tectonic implications of Mars crustal magnetism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[54]  P. Christensen,et al.  Compositional heterogeneity of the ancient Martian crust: Analysis of Ares Vallis bedrock with THEMIS and TES data , 2005 .

[55]  D. W. Powers,et al.  New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal , 2005 .

[56]  David A. Kring,et al.  Impact‐induced hydrothermal activity on early Mars , 2005 .

[57]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[58]  Harry Y. McSween,et al.  Identification of quartzofeldspathic materials on Mars , 2004 .

[59]  D. Leverington,et al.  An igneous origin for features of a candidate crater‐lake system in western Memnonia, Mars , 2004 .

[60]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[61]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[62]  A. Fairén,et al.  An Origin for the Linear Magnetic Anomalies on Mars through Accretion of Terranes: Implications for Dynamo Timing , 2002 .

[63]  S. Fish,et al.  Recovery of 16S ribosomal RNA gene fragments from ancient halite , 2002, Nature.

[64]  James H. Roark,et al.  Ancient lowlands on Mars , 2002 .

[65]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[66]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[67]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[68]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[69]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[70]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[71]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[72]  D. W. Powers,et al.  Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal , 2000, Nature.

[73]  T. McGenity,et al.  Origins of halophilic microorganisms in ancient salt deposits. , 2000, Environmental microbiology.

[74]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[75]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[76]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[77]  C. P. North,et al.  Surface and subsurface sedimentary structures produced by salt crusts , 2000 .

[78]  H. Newsom,et al.  Mixed Hydrothermal Fluids and the Origin of the Martian Soil: A New Quantitative Model , 1999 .

[79]  Darrell P. Chandler,et al.  Potential for preservation of halobacteria and their macromolecular constituents in brine inclusions from bedded salt deposits , 1997, Optics & Photonics.

[80]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[81]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[82]  R. Symonds,et al.  Mount St. Augustine volcano fumarole wall rock alteration: mineralogy, zoning, composition and numerical models of its formation process , 1996 .

[83]  M. Mellon,et al.  Chaotic obliquity and the nature of the Martian climate , 1995 .

[84]  T. McGenity,et al.  Archaeal halophiles (halobacteria) from two British salt mines , 1993 .

[85]  R. Burns,et al.  Rates of oxidative weathering on the surface of Mars , 1993 .

[86]  R. Burns,et al.  Evolution of sulfide mineralization on Mars , 1990 .

[87]  H. J. Melosh,et al.  Impact erosion of the primordial atmosphere of Mars , 1989, Nature.

[88]  W. Grant,et al.  Survival of Halobacteria Within Fluid Inclusions in Salt Crystals , 1988 .

[89]  G. Danielson,et al.  Mars Observer Camera , 1987 .

[90]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[91]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[92]  E. Roedder The fluids in salt , 1984 .

[93]  H. Huppert,et al.  Emplacement and cooling of komatiite lavas , 1984, Nature.

[94]  A. W. Ward Yardangs on Mars: Evidence of recent wind erosion , 1979 .

[95]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[96]  G. Neugebauer,et al.  Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft , 1973 .

[97]  M. Carr The volcanism of Mars , 1973 .

[98]  A. McEwen,et al.  Hydrovolcanic features on Mars: Preliminary observations from the first Mars year of HiRISE imaging , 2010 .

[99]  T. D. Glotch,et al.  NEAR INFRARED SPECTRAL ANALYSIS OF MIXTURES OF HALITE AND LABRADORITE FOR APPLICATION TO PUTATIVE CHLORIDE DEPOSITS OBSERVED BY CRISM , 2009 .

[100]  R. Reedy,et al.  The Martian Surface: Elemental abundances determined via the Mars Odyssey GRS , 2008 .

[101]  F. Seelos,et al.  Phyllosilicate and Hydrated Sulfate Deposits in Meridiani , 2008 .

[102]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[103]  Philip R. Christensen,et al.  Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration , 2007 .

[104]  Martin P. Ward,et al.  The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite , 2004 .

[105]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[106]  T. Ku,et al.  200 k.y. paleoclimate record from Death Valley salt core , 1999 .

[107]  Lionel Wilson,et al.  The physical volcanology of Mars , 1992 .

[108]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[109]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[110]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .