A locking-free immersed finite element method for planar elasticity interface problems

Abstract This article proposes a nonconforming immersed finite element (IFE) method for solving planar elasticity interface problems with structured (or Cartesian) meshes even if the material interface has a nontrivial geometry. IFE functions developed in this article are applicable to arbitrary configurations of elasticity materials and interface locations. Optimal approximation capability is observed for this new IFE space. The displacement Galerkin method based on this IFE space is robust (locking-free). Numerical experiments are presented to demonstrate that the IFE solution converges optimally for both compressible and nearly incompressible materials.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[3]  R. Stenberg,et al.  Analysis of Some Mixed Finite Element Methods for Plane Elasticity Equations , 1983 .

[4]  Yanping Lin,et al.  A rectangular immersed finite element space for interface problems , 2001 .

[5]  John Lowengrub,et al.  Microstructural Evolution in Inhomogeneous Elastic Media , 1997 .

[6]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[7]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[8]  Tao Lin,et al.  Linear and bilinear immersed finite elements for planar elasticity interface problems , 2012, J. Comput. Appl. Math..

[9]  D. Arnold,et al.  NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .

[10]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[11]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[12]  F. Flores,et al.  Interfaces in crystalline materials , 1994, Thin Film Physics and Applications.

[13]  N. SIAMJ. ANALYSIS OF SOME QUADRILATERAL NONCONFORMING ELEMENTS FOR INCOMPRESSIBLE ELASTICITY , 1997 .

[14]  Zhilin Li,et al.  Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions , 2009 .

[15]  Numedsche,et al.  A Family of Mixed Finite Elements for the Elasticity Problem , 2022 .

[16]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Théodore Papadopoulo,et al.  A Trilinear Immersed Finite Element Method for Solving the Electroencephalography Forward Problem , 2010, SIAM J. Sci. Comput..

[19]  Zhilin Li,et al.  An Immersed Finite Element Method for Elasticity Equations with Interfaces , 2005 .

[20]  Claes Johnson,et al.  Analysis of some mixed finite element methods related to reduced integration , 1982 .

[21]  Noboru Kikuchi,et al.  Finite element methods for constrained problems in elasticity , 1982 .

[22]  Wei Wang,et al.  A Numerical Method for Solving Elasticity Equations with Interfaces. , 2012, Communications in computational physics.

[23]  Peter Hansbo A nonconforming rotated Q1 approximation on tetrahedra , 2011 .

[24]  C. P. Gupta,et al.  A family of higher order mixed finite element methods for plane elasticity , 1984 .

[25]  R. S. Falk Nonconforming finite element methods for the equations of linear elasticity , 1991 .

[26]  Mary F. Wheeler,et al.  Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity , 2003, Numerische Mathematik.

[27]  R. Kafafy,et al.  Three‐dimensional immersed finite element methods for electric field simulation in composite materials , 2005 .

[28]  Bernardo Cockburn,et al.  Discontinuous Galerkin methods for incompressible elastic materials , 2006 .

[29]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[30]  Xiaoming He,et al.  Approximation capability of a bilinear immersed finite element space , 2008 .

[31]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[32]  Thomas P. Wihler Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems , 2006, Math. Comput..

[33]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[34]  Slimane Adjerid,et al.  A p-th degree immersed finite element for boundary value problems with discontinuous coefficients , 2009 .

[35]  P. Hansbo,et al.  Discontinuous Galerkin and the Crouzeix–Raviart element : application to elasticity , 2003 .

[36]  Xingzhou Yang,et al.  The immersed interface method for elasticity problems with interfaces , 2002 .

[37]  O. Sigmund,et al.  Multiphase composites with extremal bulk modulus , 2000 .

[38]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[39]  Xiaoming He Bilinear Immersed Finite Elements for Interface Problems , 2009 .

[40]  M. Bercovier Perturbation of mixed variational problems. Application to mixed finite element methods , 1978 .

[41]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[42]  John Lowengrub,et al.  Microstructural Evolution in Orthotropic Elastic Media , 2000 .

[43]  Dongwoo Sheen,et al.  A Locking-Free Nonconforming Finite Element Method for Planar Linear Elasticity , 2003, Adv. Comput. Math..

[44]  I. Babuska,et al.  On locking and robustness in the finite element method , 1992 .

[45]  Huajian Gao,et al.  Continuum and atomistic studies of intersonic crack propagation , 2001 .

[46]  Shaochun Chen,et al.  A quadrilateral nonconforming finite element for linear elasticity problem , 2007, Adv. Comput. Math..

[47]  Do Y. Kwak,et al.  Optimal convergence analysis of an immersed interface finite element method , 2010, Adv. Comput. Math..

[48]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[49]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[50]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .