A sensitive environmental DNA (eDNA) assay leads to new insights on Ruffe (Gymnocephalus cernua) spread in North America

[1]  Keith R Hayes,et al.  Biological invasions: recommendations for U.S. policy and management. , 2006, Ecological applications : a publication of the Ecological Society of America.

[2]  T. Edsall,et al.  Growth-Temperature Relation for Young-Of-The-Year Ruffe , 1993 .

[3]  J. Gunderson,et al.  Overview of the International Symposium on Eurasian Ruffe (Gymnocephalus cernuus) Biology, Impacts, and Control , 1998 .

[4]  P. Leigh Benefits and Costs of the Ruffe Control Program for the Great Lakes Fishery , 1998 .

[5]  D. Lodge,et al.  Particle size distribution and optimal capture of aqueous macrobial eDNA , 2014, bioRxiv.

[6]  Andrew R Mahon,et al.  Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. , 2014, Environmental science & technology.

[7]  Robin Abell,et al.  Freshwater ecoregions of North America : a conservation assessment , 1999 .

[8]  D. Simberloff,et al.  Eradication revisited: dealing with exotic species. , 2000, Trends in ecology & evolution.

[9]  Ion I. Măndoiu,et al.  PrimerHunter: a primer design tool for PCR-based virus subtype identification , 2009, Nucleic acids research.

[10]  D. Lodge,et al.  Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network , 2011 .

[11]  C. Hardy,et al.  A framework for estimating the sensitivity of eDNA surveys , 2016, Molecular ecology resources.

[12]  John A Darling,et al.  From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. , 2011, Environmental research.

[13]  Pierre Taberlet,et al.  Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus , 2012 .

[14]  C. Bronte,et al.  Fish Community Changes in the St. Louis River Estuary, Lake Superior, 1989–1996: Is It Ruffe or Population Dynamics? , 1998 .

[15]  Eske Willerslev,et al.  Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples , 2012, PloS one.

[16]  J. Darling Genetic studies of aquatic biological invasions: closing the gap between research and management , 2015, Biological Invasions.

[17]  W. L. Chadderton,et al.  “Sight‐unseen” detection of rare aquatic species using environmental DNA , 2011 .

[18]  Robert S. Arkle,et al.  Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders , 2011, PloS one.

[19]  Carol A. Stepien,et al.  Genetic Diversity of Invasive Species in the Great Lakes Versus Their Eurasian Source Populations: Insights for Risk Analysis , 2005, Risk analysis : an official publication of the Society for Risk Analysis.

[20]  W. L. Chadderton,et al.  Environmental conditions influence eDNA persistence in aquatic systems. , 2014, Environmental science & technology.

[21]  Gerald R. Smith Late Cenozoic Freshwater Fishes of North America , 1981 .

[22]  H. MacIsaac,et al.  Domestic ships as a potential pathway of nonindigenous species from the Saint Lawrence River to the Great Lakes , 2013, Biological Invasions.

[23]  H. Doi,et al.  Using Environmental DNA to Estimate the Distribution of an Invasive Fish Species in Ponds , 2013, PloS one.

[24]  C. Fremling Mississippi River Fisheries: A Case History , 1989 .

[25]  P. Taberlet,et al.  Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data , 2015, Molecular ecology resources.

[26]  U. Reischl,et al.  In-House Nucleic Acid Amplification Assays in Research: How Much Quality Control Is Needed before One Can Rely upon the Results? , 2005, Journal of Clinical Microbiology.

[27]  Jim Foster,et al.  Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus) , 2015 .

[28]  W. L. Chadderton,et al.  Global Introductions of Crayfishes: Evaluating the Impact of Species Invasions on Ecosystem Services , 2012 .

[29]  C. Wiuf,et al.  Monitoring endangered freshwater biodiversity using environmental DNA. , 2012, Molecular ecology.

[30]  M. Sierszen,et al.  Trophic Analysis of Ruffe (Gymnocephalus cernuus) and White Perch (Morone americana) in a Lake Superior Coastal Food Web, Using Stable Isotope Techniques , 1996 .

[31]  S. Sarkar,et al.  Systematic conservation planning , 2000, Nature.

[32]  Stephen F. Jane An Assessment of Environmental Dna as a Tool to Detect Fish Species in Headwater Streams , 2014 .

[33]  P. Taberlet,et al.  Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding , 2016, Molecular ecology.

[34]  K. Coyne,et al.  Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.) , 2014, PloS one.

[35]  D. Lodge,et al.  Take a risk: Preferring prevention over control of biological invaders , 2007 .

[36]  W. L. Chadderton,et al.  A Spatial Modeling Approach to Predicting the Secondary Spread of Invasive Species Due to Ballast Water Discharge , 2014, PloS one.

[37]  Frank M. D'Itri,et al.  Zebra Mussels and Aquatic Nuisance Species , 1997 .

[38]  Gordon Luikart,et al.  Advancing ecological understandings through technological transformations in noninvasive genetics , 2009, Molecular ecology resources.

[39]  Derek H. Ogle,et al.  Diet of Larval Ruffe (Gymnocephalus cernuus) in the St. Louis River Harbor, Lake Superior , 2004 .

[40]  W. L. Chadderton,et al.  Aquatic invasive species risk assessment for the Chicago Sanitary and Ship Canal , 2010 .

[41]  Robert S. Arkle,et al.  Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples , 2013 .

[42]  C. Jerde,et al.  Improving confidence in environmental DNA species detection , 2015, Molecular ecology resources.

[43]  Herdina,et al.  Toward routine, DNA-based detection methods for marine pests. , 2010, Biotechnology advances.

[44]  G. Lamberti,et al.  A comparison of habitat use and habitat-specific feeding efficiency by Eurasian ruffe (Gymnocephalus cernuus) and yellow perch (Perca flavescens) , 2006 .

[45]  B. W. Sweeney,et al.  Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality? , 2011, Journal of the North American Benthological Society.

[46]  K. McKelvey,et al.  Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity , 2013, PloS one.

[47]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[48]  J. Crooks Lag times and exotic species: The ecology and management of biological invasions in slow-motion , 2005 .

[49]  Helen C. Rees,et al.  REVIEW: The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology , 2014 .

[50]  Melvin J. Dubnick Army Corps of Engineers , 1998 .

[51]  Shefali V. Mehta,et al.  Optimal detection and control strategies for invasive species management , 2007 .