A fast solver for linear systems with displacement structure

We describe a fast solver for linear systems with reconstructible Cauchy-like structure, which requires O(rn2) floating point operations and O(rn) memory locations, where n is the size of the matrix and r its displacement rank. The solver is based on the application of the generalized Schur algorithm to a suitable augmented matrix, under some assumptions on the knots of the Cauchy-like matrix. It includes various pivoting strategies, already discussed in the literature, and a new algorithm, which only requires reconstructibility. We have developed a software package, written in Matlab and C-MEX, which provides a robust implementation of the above method. Our package also includes solvers for Toeplitz(+Hankel)-like and Vandermonde-like linear systems, as these structures can be reduced to Cauchy-like by fast and stable transforms. Numerical experiments demonstrate the effectiveness of the software.

[1]  Michael Stewart,et al.  A Superfast Toeplitz Solver with Improved Numerical Stability , 2003, SIAM J. Matrix Anal. Appl..

[2]  Adam W. Bojanczyk,et al.  Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices , 1996 .

[3]  Cornelis V. M. van der Mee,et al.  A Method for Generating Infinite Positive Self-adjoint Test Matrices and Riesz Bases , 2005, SIAM J. Matrix Anal. Appl..

[4]  G. Golub,et al.  Numerical techniques in mathematical programming , 1970 .

[5]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[6]  Federico Poloni,et al.  A note on the O(n)-storage implementation of the GKO algorithm and its adaptation to Trummer-like matrices , 2009, Numerical Algorithms.

[7]  Stef Graillat,et al.  Error-free transformations in real and complex floating point arithmetic , 2007 .

[8]  Thomas Kailath,et al.  Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .

[9]  Richard P. Brent,et al.  Error analysis of a fast partial pivoting method for structured matrices , 1995, Optics & Photonics.

[10]  Georg Heinig,et al.  Inversion of generalized Cauchy matrices and other classes of structured matrices , 1995 .

[11]  Irving H. Siegel Deferment of Computation in the Method of Least Squares , 1965 .

[12]  Per Christian Hansen,et al.  FORTRAN subroutines for general Toeplitz systems , 1992, TOMS.

[13]  Adam W. Bojanczyk,et al.  Transformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices Part I. Transformations , 1996 .

[14]  L. Ljung,et al.  New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices , 1979 .

[15]  Georg Heinig,et al.  A Stabilized Superfast Solver for Nonsymmetric Toeplitz Systems , 2001, SIAM J. Matrix Anal. Appl..

[16]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[17]  Ming Gu,et al.  Stable and Efficient Algorithms for Structured Systems of Linear Equations , 1998, SIAM J. Matrix Anal. Appl..

[18]  Dario Bini,et al.  A Fast Algorithm for Approximate Polynomial GCD Based on Structured Matrix Computations , 2010 .

[19]  V. V. Voevodin,et al.  TOEPLITZ package users' guide , 1983 .

[20]  J. Demmel,et al.  Sun Microsystems , 1996 .

[21]  William Kahan,et al.  Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic , 1996 .

[22]  G. Marchuk,et al.  Numerical methods and applications , 1995 .

[23]  T. Kailath,et al.  Generalized Displacement Structure for Block-Toeplitz,Toeplitz-Block, and Toeplitz-Derived Matrices , 1994 .

[24]  Giuseppe Rodriguez,et al.  Fast Solution of Toeplitz- and Cauchy-Like Least-Squares Problems , 2006, SIAM J. Matrix Anal. Appl..

[25]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[26]  Lothar Reichel,et al.  Factorizations of Cauchy matrices , 1997 .

[27]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[28]  Georg Heinig,et al.  A superfast solver for real symmetric Toeplitz systems using real trigonometric transformations , 2005, Numer. Linear Algebra Appl..

[29]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[30]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[31]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .

[32]  Dario Bini Numerical methods for structured matrices and applications : the Georg Heinig memorial volume , 2010 .

[33]  Shivkumar Chandrasekaran,et al.  A Superfast Algorithm for Toeplitz Systems of Linear Equations , 2007, SIAM J. Matrix Anal. Appl..

[34]  Thomas Kailath,et al.  Divide-and-conquer solutions of least-squares problems for matrices with displacement structure , 1991 .