Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity

The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength.

[1]  P. Somogyi,et al.  Sleep and Movement Differentiates Actions of Two Types of Somatostatin-Expressing GABAergic Interneuron in Rat Hippocampus , 2016, Neuron.

[2]  H. Schindelin,et al.  Modulation of gephyrin-glycine receptor affinity by multivalency. , 2014, ACS chemical biology.

[3]  J. Meier,et al.  Palmitoylation of Gephyrin Controls Receptor Clustering and Plasticity of GABAergic Synapses , 2014, PLoS biology.

[4]  E. M. Petrini,et al.  Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP , 2014, Nature Communications.

[5]  Nicholas A. Frost,et al.  Multiple Spatial and Kinetic Subpopulations of CaMKII in Spines and Dendrites as Resolved by Single-Molecule Tracking PALM , 2014, The Journal of Neuroscience.

[6]  S. Moss,et al.  Phosphorylation of GABAA receptors influences receptor trafficking and neurosteroid actions , 2014, Psychopharmacology.

[7]  P. Somogyi,et al.  Sleep and Movement Differentiates Actions of Two Types of Somatostatin-Expressing GABAergic Interneuron in Rat Hippocampus , 2014, Neuron.

[8]  A. Triller,et al.  GABAA receptor subunit composition and competition at synapses are tuned by GABAB receptor activity , 2014, Molecular and Cellular Neuroscience.

[9]  S. Moss,et al.  Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABAA receptors , 2014, Proceedings of the National Academy of Sciences.

[10]  E. Cherubini,et al.  Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses , 2014, Front. Cell. Neurosci..

[11]  A. Fournier,et al.  Neuronal cytoskeleton in synaptic plasticity and regeneration , 2014, Journal of neurochemistry.

[12]  Christos G. Gkogkas,et al.  Remote Control of Gene Function by Local Translation , 2014, Cell.

[13]  Xiaobing Chen,et al.  Electron tomography on γ‐aminobutyric acid‐ergic synapses reveals a discontinuous postsynaptic network of filaments , 2014, The Journal of comparative neurology.

[14]  J. Fritschy,et al.  Gephyrin: a master regulator of neuronal function? , 2014, Nature Reviews Neuroscience.

[15]  Gina G. Turrigiano,et al.  Deprivation-Induced Strengthening of Presynaptic and Postsynaptic Inhibitory Transmission in Layer 4 of Visual Cortex during the Critical Period , 2014, The Journal of Neuroscience.

[16]  D. Choquet,et al.  A Two-state Model for the Diffusion of the A2A Adenosine Receptor in Hippocampal Neurons , 2014, The Journal of Biological Chemistry.

[17]  Maxime Dahan,et al.  Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. , 2014, Biophysical journal.

[18]  B. Dias,et al.  Gephyrin plays a key role in BDNF-dependent regulation of amygdala surface GABAARs , 2013, Neuroscience.

[19]  D. Bright,et al.  Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus , 2013, The European journal of neuroscience.

[20]  Richard L. Huganir,et al.  AMPARs and Synaptic Plasticity: The Last 25 Years , 2013, Neuron.

[21]  Y. Goda,et al.  The interplay between Hebbian and homeostatic synaptic plasticity , 2013, The Journal of cell biology.

[22]  Kelly R. Tan,et al.  Cocaine Disinhibits Dopamine Neurons by Potentiation of GABA Transmission in the Ventral Tegmental Area , 2013, Science.

[23]  J. Poncer,et al.  Activity-Dependent Regulation of the K/Cl Transporter KCC2 Membrane Diffusion, Clustering, and Function in Hippocampal Neurons , 2013, The Journal of Neuroscience.

[24]  Daniel Choquet,et al.  Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95 , 2013, The Journal of Neuroscience.

[25]  M. Dahan,et al.  Quantitative Nanoscopy of Inhibitory Synapses: Counting Gephyrin Molecules and Receptor Binding Sites , 2013, Neuron.

[26]  F. Perez,et al.  Local palmitoylation cycles define activity-regulated postsynaptic subdomains , 2013, The Journal of cell biology.

[27]  O. Thoumine,et al.  Neurexin-1β binding to neuroligin-1 triggers the preferential recruitment of PSD-95 versus gephyrin through tyrosine phosphorylation of neuroligin-1. , 2013, Cell reports.

[28]  Yu Song,et al.  Nanoscale Scaffolding Domains within the Postsynaptic Density Concentrate Synaptic AMPA Receptors , 2013, Neuron.

[29]  Jaclyn I. Wamsteeker,et al.  Noradrenaline is a stress-associated metaplastic signal at GABA synapses , 2013, Nature Neuroscience.

[30]  A. Brooks-Kayal,et al.  Down‐regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus , 2013, Epilepsia.

[31]  Susumu Y. Imanishi,et al.  Extracellular Signal-regulated Kinase and Glycogen Synthase Kinase 3β Regulate Gephyrin Postsynaptic Aggregation and GABAergic Synaptic Function in a Calpain-dependent Mechanism* , 2013, The Journal of Biological Chemistry.

[32]  H. Man,et al.  Ubiquitination of Neurotransmitter Receptors and Postsynaptic Scaffolding Proteins , 2013, Neural plasticity.

[33]  J. Meier,et al.  Direct binding of GABAA receptor β2 and β3 subunits to gephyrin , 2013, The European journal of neuroscience.

[34]  R. Olsen,et al.  Ethanol Promotes Clathrin Adaptor-Mediated Endocytosis via the Intracellular Domain of δ-Containing GABAA Receptors , 2012, The Journal of Neuroscience.

[35]  S. Manley,et al.  Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging , 2012, Proceedings of the National Academy of Sciences.

[36]  A. Triller,et al.  Diffusion Barriers Constrain Receptors at Synapses , 2012, PloS one.

[37]  J. Kirsch,et al.  Phosphorylation of Gephyrin in Hippocampal Neurons by Cyclin-dependent Kinase CDK5 at Ser-270 Is Dependent on Collybistin , 2012, The Journal of Biological Chemistry.

[38]  Wenjun Gao,et al.  Hyperdopaminergic modulation of inhibitory transmission is dependent on GSK‐3β signaling‐mediated trafficking of GABAA receptors , 2012, Journal of neurochemistry.

[39]  S. Moss,et al.  Activity‐dependent phosphorylation of GABAA receptors regulates receptor insertion and tonic current , 2012, The EMBO journal.

[40]  R. Macdonald,et al.  γ-Aminobutyric Acid Type A (GABAA) Receptor α Subunits Play a Direct Role in Synaptic Versus Extrasynaptic Targeting*♦ , 2012, The Journal of Biological Chemistry.

[41]  K. Roche,et al.  Posttranslational Regulation of Ampa Receptor Trafficking and Function This Review Comes from a Themed Issue on Synaptic Structure and Function Edited , 2022 .

[42]  K. Mikoshiba,et al.  Gephyrin-Independent GABAAR Mobility and Clustering during Plasticity , 2012, PloS one.

[43]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[44]  G. Schwarz,et al.  Splice-specific Glycine Receptor Binding, Folding, and Phosphorylation of the Scaffolding Protein Gephyrin* , 2012, The Journal of Biological Chemistry.

[45]  V. Haucke,et al.  Stabilization of GABAA Receptors at Endocytic Zones Is Mediated by an AP2 Binding Motif within the GABAA Receptor β3 Subunit , 2012, The Journal of Neuroscience.

[46]  Y. Yanagawa,et al.  Activity-dependent coordinated mobility of hippocampal inhibitory synapses visualized with presynaptic and postsynaptic tagged-molecular markers , 2012, Molecular and Cellular Neuroscience.

[47]  David A. Lewis,et al.  Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia , 2012, Trends in Neurosciences.

[48]  I. Módy,et al.  Extrasynaptic GABAA Receptors: Their Function in the CNS and Implications for Disease , 2012, Neuron.

[49]  Thomas A Blanpied,et al.  Subsynaptic AMPA Receptor Distribution Is Acutely Regulated by Actin-Driven Reorganization of the Postsynaptic Density , 2012, The Journal of Neuroscience.

[50]  F. Benfenati,et al.  Intracellular chloride concentration influences the GABAA receptor subunit composition , 2012, Nature Communications.

[51]  S. Moss,et al.  Gephyrin-mediated γ-Aminobutyric Acid Type A and Glycine Receptor Clustering Relies on a Common Binding Site* , 2011, The Journal of Biological Chemistry.

[52]  S. Moss,et al.  The Residence Time of GABAARs at Inhibitory Synapses Is Determined by Direct Binding of the Receptor α1 Subunit to Gephyrin , 2011, The Journal of Neuroscience.

[53]  P. Scheiffele,et al.  Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo‐axonic synapses on CA1 pyramidal cells , 2011, The Journal of physiology.

[54]  T. Giordano,et al.  Cav1.2 L-Type Ca2+ Channels Mediate Cocaine-Induced GluA1 Trafficking in the Nucleus Accumbens, a Long-Term Adaptation Dependent on Ventral Tegmental Area Cav1.3 Channels , 2011, The Journal of Neuroscience.

[55]  M. Ghasemzadeh,et al.  Glutamatergic plasticity in medial prefrontal cortex and ventral tegmental area following extended-access cocaine self-administration , 2011, Brain Research.

[56]  O. Pascual,et al.  Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C , 2011, The EMBO journal.

[57]  Jennifer M. Mitchell,et al.  A novel δ opioid receptor‐mediated enhancement of GABAA receptor function induced by stress in ventral tegmental area neurons , 2011, The Journal of physiology.

[58]  W. Sieghart,et al.  Molecular Basis of the γ-Aminobutyric Acid A Receptor α3 Subunit Interaction with the Clustering Protein Gephyrin* , 2011, The Journal of Biological Chemistry.

[59]  A. Craig,et al.  Inhibitory Synapse Dynamics: Coordinated Presynaptic and Postsynaptic Mobility and the Major Contribution of Recycled Vesicles to New Synapse Formation , 2011, The Journal of Neuroscience.

[60]  S. Moss,et al.  The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. , 2011, Physiological reviews.

[61]  T. Fuchs,et al.  GABAA Receptor Trafficking-Mediated Plasticity of Inhibitory Synapses , 2011, Neuron.

[62]  J. Hurley,et al.  Molecular mechanisms of ubiquitin-dependent membrane traffic. , 2011, Annual review of biophysics.

[63]  E. M. Petrini,et al.  Impact of Synaptic Neurotransmitter Concentration Time Course on the Kinetics and Pharmacological Modulation of Inhibitory Synaptic Currents , 2011, Front. Cell. Neurosci..

[64]  H. Gainer,et al.  PSD-95 Is Required to Sustain the Molecular Organization of the Postsynaptic Density , 2011, The Journal of Neuroscience.

[65]  E. Cherubini,et al.  Gephyrin Regulates GABAergic and Glutamatergic Synaptic Transmission in Hippocampal Cell Cultures * , 2011 .

[66]  Chiayu Q. Chiu,et al.  Long-term plasticity at inhibitory synapses , 2011, Current Opinion in Neurobiology.

[67]  S. Moss,et al.  NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor mediated currents , 2011, Nature Neuroscience.

[68]  P. Kanold,et al.  Ampa Receptor Subunit Glur1 (glua1) Serine-845 Site Is Involved in Synaptic Depression but Not in Spine Shrinkage Associated with Chemical Long-term Kaiwen He Running Title: Morphological and Functional Changes following Chemltd , 2022 .

[69]  E. M. Petrini,et al.  Influence of GABAAR Monoliganded States on GABAergic Responses , 2011, The Journal of Neuroscience.

[70]  Rava Azeredo da Silveira,et al.  Formation and stability of synaptic receptor domains. , 2010, Physical review letters.

[71]  R. Olsen,et al.  GABAA receptor plasticity in alcohol withdrawal , 2010 .

[72]  J. Henley,et al.  Differential roles of GRIP1a and GRIP1b in AMPA receptor trafficking , 2010, Neuroscience Letters.

[73]  R. Carroll,et al.  Selective translocation of Ca2+/calmodulin protein kinase IIα (CaMKIIα) to inhibitory synapses , 2010, Proceedings of the National Academy of Sciences.

[74]  W. Sieghart,et al.  Protein Kinase C Phosphorylation Regulates Membrane Insertion of GABAA Receptor Subtypes That Mediate Tonic Inhibition* , 2010, The Journal of Biological Chemistry.

[75]  A. Triller,et al.  A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses , 2010, Nature Neuroscience.

[76]  M. Ehlers,et al.  Ubiquitination in postsynaptic function and plasticity. , 2010, Annual review of cell and developmental biology.

[77]  Antoine Triller,et al.  Synaptic stability and plasticity in a floating world , 2010, Current Opinion in Neurobiology.

[78]  M. Poo,et al.  Elevated BDNF after Cocaine Withdrawal Facilitates LTP in Medial Prefrontal Cortex by Suppressing GABA Inhibition , 2010, Neuron.

[79]  Lewis D. Griffin,et al.  NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the γ2 subunit , 2010, Proceedings of the National Academy of Sciences.

[80]  E. Gouaux,et al.  Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. , 2010, Biophysical journal.

[81]  H. Ewers,et al.  Single Particle Tracking of α7 Nicotinic AChR in Hippocampal Neurons Reveals Regulated Confinement at Glutamatergic and GABAergic Perisynaptic Sites , 2010, PloS one.

[82]  D. K. Berg,et al.  Lateral Mobility of Nicotinic Acetylcholine Receptors on Neurons Is Determined by Receptor Composition, Local Domain, and Cell Type , 2010, The Journal of Neuroscience.

[83]  P. Poisbeau,et al.  Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene , 2009, The European journal of neuroscience.

[84]  T. Abel,et al.  Deficits in spatial memory correlate with modified γ-aminobutyric acid type A receptor tyrosine phosphorylation in the hippocampus , 2009, Proceedings of the National Academy of Sciences.

[85]  Roberto Malinow,et al.  AMPA Receptor Incorporation into Synapses during LTP: The Role of Lateral Movement and Exocytosis , 2009, Neuron.

[86]  R. Huganir,et al.  Ubiquitin-dependent lysosomal targeting of GABAA receptors regulates neuronal inhibition , 2009, Proceedings of the National Academy of Sciences.

[87]  Zhen Yan,et al.  Blocking L-type Voltage-gated Ca2+ Channels with Dihydropyridines Reduces γ-Aminobutyric Acid Type A Receptor Expression and Synaptic Inhibition* , 2009, The Journal of Biological Chemistry.

[88]  M. Hoon,et al.  Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin , 2009, Neuron.

[89]  C. Colangelo,et al.  Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity , 2009, Cell.

[90]  Katharina Gaus,et al.  Quantitative Microscopy: Protein Dynamics and Membrane Organisation , 2009, Traffic.

[91]  M. Pangalos,et al.  GABAA receptor membrane trafficking regulates spine maturity , 2009, Proceedings of the National Academy of Sciences.

[92]  Daniel Choquet,et al.  Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation , 2009, Neuron.

[93]  I. Arancibia-Cárcamo,et al.  Regulation of GABA(A) receptor membrane trafficking and synaptic localization. , 2009, Pharmacology & therapeutics.

[94]  C. Specht,et al.  Gephyrin Oligomerization Controls GlyR Mobility and Synaptic Clustering , 2009, The Journal of Neuroscience.

[95]  K. Mikoshiba,et al.  Activity-Dependent Tuning of Inhibitory Neurotransmission Based on GABAAR Diffusion Dynamics , 2009, Neuron.

[96]  J. Kauer,et al.  Presynaptic plasticity: targeted control of inhibitory networks , 2009, Current Opinion in Neurobiology.

[97]  P. Jedlicka,et al.  Increased network excitability and impaired induction of long-term potentiation in the dentate gyrus of collybistin-deficient mice in vivo , 2009, Molecular and Cellular Neuroscience.

[98]  Daniel Choquet,et al.  Control of the Postsynaptic Membrane Viscosity , 2009, The Journal of Neuroscience.

[99]  Majid H Mohajerani,et al.  At Immature Mossy-Fiber–CA3 Synapses, Correlated Presynaptic and Postsynaptic Activity Persistently Enhances GABA Release and Network Excitability via BDNF and cAMP-Dependent PKA , 2009, The Journal of Neuroscience.

[100]  Antoine Triller,et al.  The dynamics of synaptic scaffolds , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[101]  C. Specht,et al.  Molecular dynamics of postsynaptic receptors and scaffold proteins , 2008, Current Opinion in Neurobiology.

[102]  Werner Sieghart,et al.  International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update , 2008, Pharmacological Reviews.

[103]  O. Pascual,et al.  Homeostatic Regulation of Synaptic GlyR Numbers Driven by Lateral Diffusion , 2008, Neuron.

[104]  F. Saraga,et al.  Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus , 2008, Neuroscience.

[105]  Alastair M. Hosie,et al.  Distinct Regulation of β2 and β3 Subunit-Containing Cerebellar Synaptic GABAA Receptors by Calcium/Calmodulin-Dependent Protein Kinase II , 2008, The Journal of Neuroscience.

[106]  P. Castillo,et al.  Interneuron activity controls endocannabinoid-mediated presynaptic plasticity through calcineurin , 2008, Proceedings of the National Academy of Sciences.

[107]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[108]  G. Korza,et al.  Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. , 2008, Molecular biology of the cell.

[109]  Yumiko Yoshimura,et al.  State-Dependent Bidirectional Modification of Somatic Inhibition in Neocortical Pyramidal Cells , 2008, Neuron.

[110]  Zhen Yan,et al.  Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor γ2 subunit , 2008, Proceedings of the National Academy of Sciences.

[111]  M. Pangalos,et al.  The Clustering of GABAA Receptor Subtypes at Inhibitory Synapses is Facilitated via the Direct Binding of Receptor α2 Subunits to Gephyrin , 2008, The Journal of Neuroscience.

[112]  R. Carroll,et al.  NMDA Receptor Activation Potentiates Inhibitory Transmission through GABA Receptor-Associated Protein-Dependent Exocytosis of GABAA Receptors , 2007, The Journal of Neuroscience.

[113]  Wendou Yu,et al.  Gephyrin clustering is required for the stability of GABAergic synapses , 2007, Molecular and Cellular Neuroscience.

[114]  K. Ressler,et al.  Training‐induced changes in the expression of GABAA‐associated genes in the amygdala after the acquisition and extinction of Pavlovian fear , 2007, The European journal of neuroscience.

[115]  M. Pangalos,et al.  Activity-Dependent Ubiquitination of GABAA Receptors Regulates Their Accumulation at Synaptic Sites , 2007, The Journal of Neuroscience.

[116]  R. Olsen,et al.  Mechanisms of Reversible GABAA Receptor Plasticity after Ethanol Intoxication , 2007, The Journal of Neuroscience.

[117]  C. Lüscher,et al.  Rapid Synthesis and Synaptic Insertion of GluR2 for mGluR-LTD in the Ventral Tegmental Area , 2007, Science.

[118]  S. Vicini,et al.  GABAergic currents in RT and VB thalamic nuclei follow kinetic pattern of α3- and α1-subunit-containing GABAA receptors , 2007, The European journal of neuroscience.

[119]  Alastair M. Hosie,et al.  Identification of the Sites for CaMK-II-dependent Phosphorylation of GABAA Receptors* , 2007, Journal of Biological Chemistry.

[120]  Maxime Dahan,et al.  Multiple association states between glycine receptors and gephyrin identified by SPT analysis. , 2007, Biophysical journal.

[121]  M. Ehlers,et al.  Diffusional Trapping of GluR1 AMPA Receptors by Input-Specific Synaptic Activity , 2007, Neuron.

[122]  J. Kauer,et al.  Opioids block long-term potentiation of inhibitory synapses , 2007, Nature.

[123]  E. Cherubini,et al.  Post‐phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function , 2007, The EMBO journal.

[124]  Daniel Choquet,et al.  The Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking , 2007, Neuron.

[125]  R. Olsen,et al.  GABAA receptor associated proteins: a key factor regulating GABAA receptor function , 2007, Journal of neurochemistry.

[126]  C. Keller,et al.  GODZ-Mediated Palmitoylation of GABAA Receptors Is Required for Normal Assembly and Function of GABAergic Inhibitory Synapses , 2006, The Journal of Neuroscience.

[127]  M. Pangalos,et al.  Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts , 2006, The EMBO journal.

[128]  S. Nelson,et al.  Potentiation of cortical inhibition by visual deprivation , 2006, Nature.

[129]  C. Schweizer,et al.  Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor α3 subunit‐null mice , 2006, The European journal of neuroscience.

[130]  M. Bear,et al.  Instructive Effect of Visual Experience in Mouse Visual Cortex , 2006, Neuron.

[131]  Z. Xiang,et al.  Activity-Dependent Bidirectional Modification of Inhibitory Synaptic Transmission in Rat Subthalamic Neurons , 2006, The Journal of Neuroscience.

[132]  C. Lüscher,et al.  Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression , 2006, Nature Neuroscience.

[133]  A. Triller,et al.  Activity-Dependent Movements of Postsynaptic Scaffolds at Inhibitory Synapses , 2006, The Journal of Neuroscience.

[134]  Ann Marie Craig,et al.  Postsynaptic protein mobility in dendritic spines: Long-term regulation by synaptic NMDA receptor activation , 2006, Molecular and Cellular Neuroscience.

[135]  Alison L. Barth,et al.  Pathway-Specific Trafficking of Native AMPARs by In Vivo Experience , 2006, Neuron.

[136]  H. Betz,et al.  The state of the actin cytoskeleton determines its association with gephyrin: Role of ena/VASP family members , 2006, Molecular and Cellular Neuroscience.

[137]  M. Kneussel,et al.  Neuronal cotransport of glycine receptor and the scaffold protein gephyrin , 2006, The Journal of cell biology.

[138]  P. Haydon,et al.  Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors , 2005, The Journal of Neuroscience.

[139]  R. Huganir,et al.  Differential Regulation of AMPA Receptor Subunit Trafficking by Palmitoylation of Two Distinct Sites , 2005, Neuron.

[140]  Alastair M. Hosie,et al.  Dynamic mobility of functional GABAA receptors at inhibitory synapses , 2005, Nature Neuroscience.

[141]  O. Prange,et al.  Neuroligins Mediate Excitatory and Inhibitory Synapse Formation , 2005, Journal of Biological Chemistry.

[142]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[143]  Michael Davis,et al.  Regulation of Gephyrin and GABAA Receptor Binding within the Amygdala after Fear Acquisition and Extinction , 2005, The Journal of Neuroscience.

[144]  Y. Zhu,et al.  Ca2+–calmodulin signalling pathway up-regulates GABA synaptic transmission through cytoskeleton-mediated mechanisms , 2004, Neuroscience.

[145]  Mikyoung Park,et al.  Recycling Endosomes Supply AMPA Receptors for LTP , 2004, Science.

[146]  S. Moss,et al.  Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[147]  C. Jackson Faculty Opinions recommendation of The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the beta subunits of the GABA receptors. , 2004 .

[148]  M. Rubio,et al.  The brefeldin A‐inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the β subunits of the GABAA receptors , 2004, Journal of neurochemistry.

[149]  C. Keller,et al.  The γ2 Subunit of GABAA Receptors Is a Substrate for Palmitoylation by GODZ , 2004, The Journal of Neuroscience.

[150]  S. Moss,et al.  Palmitoylation regulates the clustering and cell surface stability of GABAA receptors , 2004, Molecular and Cellular Neuroscience.

[151]  S. Moss,et al.  Molecular Brain-Derived Neurotrophic Factor Modulates Fast Synaptic Inhibition by Regulating GABAA Receptor Phosphorylation , Activity , and Cell-Surface Stability , 2004 .

[152]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[153]  C. Chapman,et al.  GABAB Receptor‐ and Metabotropic Glutamate Receptor‐Dependent Cooperative Long‐Term Potentiation of Rat Hippocampal GABAA Synaptic Transmission , 2003, The Journal of physiology.

[154]  Bernhard Lüscher,et al.  The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses , 2003, Molecular and Cellular Neuroscience.

[155]  D. Choquet,et al.  Direct imaging of lateral movements of AMPA receptors inside synapses , 2003, The EMBO journal.

[156]  Michael C Crair,et al.  Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development , 2003, Nature Neuroscience.

[157]  M. Poo,et al.  Coincident Pre- and Postsynaptic Activity Modifies GABAergic Synapses by Postsynaptic Changes in Cl− Transporter Activity , 2003, Neuron.

[158]  L. C. Robinson,et al.  Constitutive GABAA Receptor Endocytosis Is Dynamin-mediated and Dependent on a Dileucine AP2 Adaptin-binding Motif within the β2 Subunit of the Receptor* , 2003, Journal of Biological Chemistry.

[159]  W. Ju,et al.  Control of Synaptic Strength, a Novel Function of Akt , 2003, Neuron.

[160]  Juha Voipio,et al.  Cation–chloride co-transporters in neuronal communication, development and trauma , 2003, Trends in Neurosciences.

[161]  Gavin Rumbaugh,et al.  Phosphorylation of the AMPA Receptor GluR1 Subunit Is Required for Synaptic Plasticity and Retention of Spatial Memory , 2003, Cell.

[162]  H. Häberlein,et al.  Lateral mobility and specific binding to GABA(A) receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. , 2003, Biochemistry.

[163]  G. Ahmadian,et al.  Interaction of Calcineurin and Type-A GABA Receptor γ2 Subunits Produces Long-Term Depression at CA1 Inhibitory Synapses , 2003, The Journal of Neuroscience.

[164]  Yu Tian Wang,et al.  Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD , 2002, Neuron.

[165]  Michael Davis,et al.  Regulation of Synaptic Plasticity Genes during Consolidation of Fear Conditioning , 2002, The Journal of Neuroscience.

[166]  W. Zieglgänsberger,et al.  The endogenous cannabinoid system controls extinction of aversive memories , 2002, Nature.

[167]  N. Brandon,et al.  Receptor for Activated C Kinase-1 Facilitates Protein Kinase C-Dependent Phosphorylation and Functional Modulation of GABAA Receptors with the Activation of G-Protein-Coupled Receptors , 2002, The Journal of Neuroscience.

[168]  D. Choquet,et al.  Regulation of AMPA receptor lateral movements , 2002, Nature.

[169]  A. Sergé,et al.  Receptor Activation and Homer Differentially Control the Lateral Mobility of Metabotropic Glutamate Receptor 5 in the Neuronal Membrane , 2002, The Journal of Neuroscience.

[170]  G. Westbrook,et al.  Mobile NMDA Receptors at Hippocampal Synapses , 2002, Neuron.

[171]  Neal Sweeney,et al.  Synaptic Strength Regulated by Palmitate Cycling on PSD-95 , 2002, Cell.

[172]  Mark C. W. van Rossum,et al.  Activity Deprivation Reduces Miniature IPSC Amplitude by Decreasing the Number of Postsynaptic GABAA Receptors Clustered at Neocortical Synapses , 2002, The Journal of Neuroscience.

[173]  J. Fritschy,et al.  Intact sorting, targeting, and clustering of γ‐aminobutyric acid A receptor subtypes in hippocampal neurons in vitro , 2002, The Journal of comparative neurology.

[174]  A. Triller,et al.  Fast and reversible trapping of surface glycine receptors by gephyrin , 2001, Nature Neuroscience.

[175]  N. Brandon,et al.  GABAA Receptor Phosphorylation and Functional Modulation in Cortical Neurons by a Protein Kinase C-dependent Pathway* , 2000, The Journal of Biological Chemistry.

[176]  S. Moss,et al.  Constitutive Endocytosis of GABAA Receptors by an Association with the Adaptin AP2 Complex Modulates Inhibitory Synaptic Currents in Hippocampal Neurons , 2000, The Journal of Neuroscience.

[177]  Eric R Kandel,et al.  Calcineurin-Mediated LTD of GABAergic Inhibition Underlies the Increased Excitability of CA1 Neurons Associated with LTP , 2000, Neuron.

[178]  N. Brandon,et al.  Cell surface stability of gamma-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. , 1999, The Journal of biological chemistry.

[179]  I. Knuesel,et al.  Altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice) , 1999, The European journal of neuroscience.

[180]  J. Brandstätter,et al.  Loss of Postsynaptic GABAA Receptor Clustering in Gephyrin-Deficient Mice , 1999, The Journal of Neuroscience.

[181]  Mark von Zastrow,et al.  Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity , 1999, Neuron.

[182]  D. Sun,et al.  Na+-K+-2Cl- cotransporter in immature cortical neurons: A role in intracellular Cl- regulation. , 1999, Journal of neurophysiology.

[183]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[184]  Bernhard Lüscher,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin , 1998, Nature Neuroscience.

[185]  Peter Somogyi,et al.  Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses , 1998, Nature.

[186]  G. Westbrook,et al.  Shaping of IPSCs by Endogenous Calcineurin Activity , 1997, The Journal of Neuroscience.

[187]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[188]  Stephen J. Moss,et al.  Modulation of GABAA receptors by tyrosine phosphorylation , 1995, Nature.

[189]  G. Westbrook,et al.  Desensitized states prolong GABAA channel responses to brief agonist pulses , 1995, Neuron.

[190]  J. Maloteaux,et al.  Agonist-induced muscarinic cholinergic receptor internalization, recycling and degradation in cultured neuronal cells. Cellular mechanisms and role in desensitization. , 1994, Biochemical pharmacology.

[191]  E. M. Barnes,et al.  Identification of GABAA/Benzodiazepine Receptors on Clathrin‐Coated Vesicles from Rat Brain , 1993, Journal of neurochemistry.

[192]  A. Konnerth,et al.  Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells , 1992, Nature.

[193]  王亚周 Involvement of endoplasmic reticulum stress in the necroptosis ofmicroglia/macrophages after spinal cord injury. , 2015 .

[194]  David A. Williams,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single – Quantum Dot Tracking , 2012 .

[195]  M. Avoli,et al.  GABAA Receptor Plasticity in Alcohol Withdrawal -- Jasper's Basic Mechanisms of the Epilepsies , 2012 .

[196]  D. Choquet,et al.  [Surface mobility of postsynaptic AMPARs tunes synaptic transmission]. , 2008, Medecine sciences : M/S.

[197]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[198]  R. G. Kozhedub,et al.  Temporospatial organization of membrane-synaptic modifications and topograms of slow oscillations in cortical potentials during learning , 2006, Neuroscience and Behavioral Physiology.

[199]  C. Keller,et al.  The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[200]  I. Módy,et al.  Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[201]  I. Mansuy,et al.  The gamma 2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses. , 2003, Molecular and cellular neurosciences.

[202]  Heikki Rauvala,et al.  [The dynamic synapse]. , 2003, Duodecim; laaketieteellinen aikakauskirja.

[203]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[204]  J. Benson,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. , 1998, Nature neuroscience.

[205]  M. Frotscher,et al.  Plasticity of identified neurons in slice cultures of hippocampus: a combined Golgi/electron microscopic and immunocytochemical study. , 1990, Progress in brain research.