Electoral District Design via Constrained Clustering

The paper studies the electoral district design problem where municipalities of a state have to be grouped into districts of nearly equal population while obeying certain politically motivated requirements. We develop a general framework for electoral district design that is based on the close connection of constrained geometric clustering and diagrams. The approach is computationally efficient and flexible enough to pursue various conflicting juridical demands for the shape of the districts. We demonstrate the practicability of our methodology for electoral districting in Germany.

[1]  Luc Muyldermans,et al.  Districting for salt spreading operations , 2002, Eur. J. Oper. Res..

[2]  Bruno Simeone,et al.  Local search algorithms for political districting , 2008, Eur. J. Oper. Res..

[3]  Peter Gritzmann,et al.  Geometric Clustering for the Consolidation of Farmland and Woodland , 2014 .

[4]  V. Klee,et al.  FACETS AND VERTICES OF TRANSPORTATION POLYTOPES , 1967 .

[5]  Paul G. Marlin,et al.  Application of the transportation model to a large-scale "Districting" problem , 1981, Comput. Oper. Res..

[6]  Boris Aronov,et al.  Minimum-Cost Load-Balancing Partitions , 2007, Algorithmica.

[7]  P. Gritzmann,et al.  Generalized balanced power diagrams for 3D representations of polycrystals , 2014, 1411.4535.

[8]  Steven J. Gortler,et al.  Orphan-Free Anisotropic Voronoi Diagrams , 2011, Discret. Comput. Geom..

[9]  Erik Carlsson,et al.  Balancing workloads of service vehicles over a geographic territory , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Mehran Hojati,et al.  Optimal political districting , 1996, Comput. Oper. Res..

[11]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[12]  Peter Gritzmann,et al.  On Optimal Weighted Balanced Clusterings: Gravity Bodies and Power Diagrams , 2012, SIAM J. Discret. Math..

[13]  Rolf Klein,et al.  Optimally Solving a Transportation Problem Using Voronoi Diagrams , 2012, COCOON.

[14]  Bruce W. Lamar,et al.  Political district determination using large-scale network optimization , 1997 .

[15]  U. Rothblum,et al.  Partitions: Optimality and Clustering , 2011 .

[16]  J. Weaver,et al.  Nonpartisan Political Redistricting by Computer , 1965 .

[17]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[18]  Peter Gritzmann,et al.  A balanced k-means algorithm for weighted point sets , 2013, ArXiv.

[19]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[20]  Antonio Galvão Naclério Novaes,et al.  A multiplicatively-weighted Voronoi diagram approach to logistics districting , 2006, Comput. Oper. Res..

[21]  Stefan Nickel,et al.  Towards a unified territorial design approach — Applications, algorithms and GIS integration , 2005 .

[22]  L. Goddard,et al.  Operations Research (OR) , 2007 .

[23]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[24]  Jorge Cortés,et al.  Coverage Optimization and Spatial Load Balancing by Robotic Sensor Networks , 2010, IEEE Transactions on Automatic Control.

[25]  Erik Carlsson,et al.  Shadow Prices in Territory Division , 2016 .

[26]  Peter Gritzmann,et al.  Constrained Minimum-k-Star Clustering and its application to the consolidation of farmland , 2011, Oper. Res..

[27]  Uriel G. Rothblum,et al.  Optimal partitions having disjoint convex and conic hulls , 1992, Math. Program..

[28]  Atsuyuki Okabe,et al.  Generalized network Voronoi diagrams: Concepts, computational methods, and applications , 2008, Int. J. Geogr. Inf. Sci..

[29]  B. Grofman,et al.  Measuring Compactness and the Role of a Compactness Standard in a Test for Partisan and Racial Gerrymandering , 1990, The Journal of Politics.

[30]  Atsuo Suzuki,et al.  Locational optimization problems solved through Voronoi diagrams , 1997 .

[31]  Peter Gritzmann,et al.  On Clustering Bodies: Geometry and Polyhedral Approximation , 2010, Discret. Comput. Geom..

[32]  Uriel G. Rothblum,et al.  Partitions: Optimality and ClusteringVol I: Single-Parameter , 2011 .

[33]  E. Bolker,et al.  Generalized Dirichlet tessellations , 1986 .

[34]  J. Mulvey,et al.  Solving capacitated clustering problems , 1984 .

[35]  Stefan Nickel,et al.  Planning Sales Territories — A Facility Location Approach , 2002 .

[36]  Andrea Scozzari,et al.  Political Districting: from classical models to recent approaches , 2013, Annals of Operations Research.

[37]  David B. Weinberger,et al.  Turfing , 1977, Oper. Res..

[38]  H. Young Measuring the Compactness of Legislative Districts , 1988 .

[39]  Peter Gritzmann,et al.  A quadratic optimization model for the consolidation of farmland by means of lend-lease agreements , 2004 .

[40]  Attila Tasnádi The Political Districting Problem: A Survey , 2011 .

[41]  Charles R. Hampton,et al.  Practical application of district compactness , 1993 .

[42]  Andrea Scozzari,et al.  Weighted Voronoi region algorithms for political districting , 2008, Math. Comput. Model..

[43]  Franz Aurenhammer,et al.  Voronoi Diagrams and Delaunay Triangulations , 2013 .

[44]  Jonathan Richard Shewchuk,et al.  Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.

[45]  A. Zoltners,et al.  Sales Territory Alignment: A Review and Model , 1983 .

[46]  Micah Altman,et al.  Modeling the effect of mandatory district compactness on partisan gerrymanders , 1998 .