A low failure rate quantum algorithm for searching maximum or minimum

Although Durr and Hoyer have proposed state-of-the-art quantum algorithm (DHA) for searching minimum value, the lower limit of DHA’s successful probability is 1/2 . Also, DHA requires approximately $$(\log _{2}N)^2$$ ( log 2 N ) 2 copies of the initial state. In this paper, we propose a new quantum maximum or minimum searching algorithm (QUMMSA). In big data scenarios, according to sparse sampling with different densities, we can estimate the corresponding precision parameters. QUMMSA can improve the successful probability close to $$100\%$$ 100 % . Furthermore, with the quantum exact search algorithm, QUMMSA only requires approximately $$\log _2 N$$ log 2 N copies of the initial state to solve this problem. Since preparing an arbitrary quantum state is a problem with exponential complexity, our algorithm has a greater advantage with the increasing database size. In addition, we first propose a general method for circuits construction, which can be used in any database. An experiment implemented in an IBM superconducting processor and a numerical simulation of a 6-qubit system to solve a real issue indicate the feasibility and efficiency of QUMMSA. QUMMSA can serve as a subroutine in various quantum algorithms which involves searching maximum or minimum.

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[3]  F. M. Toyama,et al.  Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters , 2013, Quantum Inf. Process..

[4]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[5]  Ashish Mani,et al.  An all-pair quantum SVM approach for big data multiclass classification , 2017, Quantum Inf. Process..

[6]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[7]  G. Long,et al.  Phase Matching in Quantum Searching , 1999, quant-ph/9906020.

[8]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[9]  Markus Grassl,et al.  Grover's quantum search algorithm for an arbitrary initial amplitude distribution , 1999 .

[10]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[11]  Zijian Diao,et al.  Exactness of the original Grover search algorithm , 2010, 1010.3652.

[12]  Lov K. Grover,et al.  Fixed-point quantum search. , 2005, Physical review letters.

[13]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[14]  L. Vandersypen,et al.  Implementation of a three-quantum-bit search algorithm , 1999, quant-ph/9910075.

[15]  Lov K. Grover Quantum Computers Can Search Rapidly by Using Almost Any Transformation , 1998 .

[16]  Ashish Kapoor,et al.  Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning , 2014, Quantum Inf. Comput..

[17]  Yang Li,et al.  Quantum Algorithm Design: Techniques and Applications , 2019, J. Syst. Sci. Complex..

[18]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[19]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[20]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[21]  P. C. Haljan,et al.  Implementation of Grover's quantum search algorithm in a scalable system , 2005 .

[22]  Giuseppe Castagnoli,et al.  Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics , 2013, 1308.5077.

[23]  Yang Sun,et al.  Phase matching condition for quantum search with a generalized initial state , 2002 .

[24]  U. Toronto,et al.  Analysis of generalized Grover quantum search algorithms using recursion equations , 2000, quant-ph/0010077.

[25]  Dmitri Maslov,et al.  Complete 3-Qubit Grover search on a programmable quantum computer , 2017, Nature Communications.

[26]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[27]  R. Feynman Simulating physics with computers , 1999 .

[28]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[29]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[31]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[32]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[34]  G. Meek Mathematical statistics with applications , 1973 .

[35]  Ahmed Younes,et al.  Quantum Search Algorithm with more Reliable Behaviour using Partial Diffusion , 2004 .

[36]  P. Høyer Arbitrary phases in quantum amplitude amplification , 2000, quant-ph/0006031.