Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis

The crystal phases, surface states and hydroxyl groups of TiO(2) can intrinsically determine its performance in the applications of photocatalysis and dye-sensitized solar cells. Here we developed a unique rutile-anatase core-shell structured nanocrystalline TiO(2) with controlled surface states and hydroxyl groups for photocatalytic applications via a simple phase conversion method, where the semi-crystalline TiO2 embedded in the caramelized sucrose matrix following the hydrothermal process was first converted to a composite of TiO(x)C(y)/C by calcining in a nitrogen atmosphere, and this composite was subsequently converted to TiO(2) by calcining in an oxygen atmosphere. It was found that the rutile phase exists within anatase particles, and the depth of rutile core in the anatase shell particles can be tuned by adjusting the thickness of TiO(x)C(y) (x y) in the precursor composite TiO(x)C(y)/C simply through changing the calcination temperature. More interestingly, the amount of surface adsorbed water and hydroxyl groups and the abundance of surface states in such core-shell structured TiO(2) can be controlled by changing the size of the rutile and anatase phases. Finally, photocatalytic degradation reaction as an example clearly demonstrates the substantial role of the surface states in determining photocatalytic activity of the TiO(2) in desired applications.

[1]  Zhigang Chen,et al.  Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states. , 2009, Journal of Colloid and Interface Science.

[2]  Sean C. Smith,et al.  Iodine doped anatase TiO2 photocatalyst with ultra-long visible light response: correlation between geometric/electronic structures and mechanisms , 2009 .

[3]  Chenghua Sun,et al.  Nitrogen-doped titania nanosheets towards visible light response. , 2009, Chemical communications.

[4]  Sean C. Smith,et al.  Band-to-Band Visible-Light Photon Excitation and Photoactivity Induced by Homogeneous Nitrogen Doping in Layered Titanates , 2009 .

[5]  Hui-Ming Cheng,et al.  The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2. , 2009, Journal of colloid and interface science.

[6]  H. Fu,et al.  Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite‐like Carbon , 2008 .

[7]  T. Akita,et al.  A green process for coupling manganese oxides with titanium(IV) dioxide. , 2008, Chemical communications.

[8]  C. Chien,et al.  FIB/TEM characterization of the composition and structure of core/shell Cu-Ni nanowires. , 2008, Nano letters.

[9]  P. Yang,et al.  Synthesis of lead chalcogenide alloy and core-shell nanowires. , 2008, Angewandte Chemie.

[10]  Moon J. Kim,et al.  Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. , 2008, Nano letters.

[11]  Chenghua Sun,et al.  Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. , 2008, Angewandte Chemie.

[12]  Xiaobo Chen,et al.  The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. , 2008, Journal of the American Chemical Society.

[13]  P. Schmuki,et al.  Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. , 2008, Angewandte Chemie.

[14]  Can Li,et al.  Importance of the relationship between surface phases and photocatalytic activity of TiO2. , 2008, Angewandte Chemie.

[15]  P. O’Brien,et al.  A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals. , 2008, Journal of the American Chemical Society.

[16]  L. Liz‐Marzán,et al.  Synthesis and Characterization of Iron/Iron Oxide Core/Shell Nanocubes , 2007 .

[17]  S. Leone,et al.  Excitation wavelength dependence of fluorescence intermittency in CdSe/ZnS core/shell quantum dots. , 2007, Nano letters.

[18]  A. J. Frank,et al.  Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. , 2007, Nano letters.

[19]  C. Sanchez,et al.  Nanostructured Titanium Oxynitride Porous Thin Films as Efficient Visible‐Active Photocatalysts , 2007 .

[20]  Haoshen Zhou,et al.  One-step synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. , 2007, ACS nano.

[21]  H. Tada,et al.  Ag(core)-AgCl(shell) standard microelectrode-loaded TiO2. , 2007, Chemical communications.

[22]  R. Liu,et al.  Ordered Mesoporous Nanocrystalline Titanium‐Carbide/Carbon Composites from In Situ Carbothermal Reduction , 2007 .

[23]  A. J. Frank,et al.  Size and shape control of nanocrystallites in mesoporous TiO2 films , 2007 .

[24]  S. Gialanella,et al.  Tailored Anatase/Brookite Nanocrystalline TiO2. The Optimal Particle Features for Liquid- and Gas-Phase Photocatalytic Reactions , 2007 .

[25]  F. J. Knorr,et al.  Influence of TiCl4 treatment on surface defect photoluminescence in pure and mixed-phase nanocrystalline TiO2. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[26]  S. Jiao,et al.  Electrolysis of Ti2CO solid solution prepared by TiC and TiO2 , 2007 .

[27]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[28]  Yunfeng Lu,et al.  Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. , 2007, Journal of the American Chemical Society.

[29]  Zhenjiang Miao,et al.  Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. , 2007, Journal of the American Chemical Society.

[30]  Ruo Yuan,et al.  Magnetic‐Core/Porous‐Shell CoFe2O4/SiO2 Composite Nanoparticles as Immobilized Affinity Supports for Clinical Immunoassays , 2007 .

[31]  A. Testino,et al.  Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. a systematic approach. , 2007, Journal of the American Chemical Society.

[32]  Tao Chen,et al.  Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture , 2007 .

[33]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[34]  Galo J. A. A. Soler-Illia,et al.  Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility , 2006 .

[35]  S. Balaji,et al.  Phonon confinement studies in nanocrystalline anatase‐TiO2 thin films by micro Raman spectroscopy , 2006 .

[36]  John T Yates,et al.  Surface science studies of the photoactivation of TiO2--new photochemical processes. , 2006, Chemical reviews.

[37]  J. Nedeljković,et al.  Photoluminescence of anatase and rutile TiO2 particles. , 2006, The journal of physical chemistry. B.

[38]  Zhigang Chen,et al.  Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. , 2006, The journal of physical chemistry. B.

[39]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[40]  Masahiro Yoshimura,et al.  A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. , 2006, Angewandte Chemie.

[41]  P. Bowen,et al.  Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point , 2006 .

[42]  Jun Chen,et al.  UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. , 2006, The journal of physical chemistry. B.

[43]  Zhigang Chen,et al.  The role of NH3 atmosphere in preparing nitrogen-doped TiO2 by mechanochemical reaction , 2006 .

[44]  M. Yoon,et al.  Synthesis of Liposome-Templated Titania Nanodisks: Optical Properties and Photocatalytic Activities , 2005 .

[45]  Taihong Wang,et al.  Enhanced photocatalytic activity of ZnO nanotetrapods , 2005 .

[46]  Jin Zhai,et al.  The fabrication and switchable superhydrophobicity of TiO2 nanorod films. , 2005, Angewandte Chemie.

[47]  Jinlong Zhang,et al.  Preparation of controllable crystalline titania and study on the photocatalytic properties. , 2005, The journal of physical chemistry. B.

[48]  T. Akita,et al.  Low-temperature synthesis of anatase-brookite composite nanocrystals: the junction effect on photocatalytic activity. , 2005, Journal of colloid and interface science.

[49]  James L. Gole,et al.  Defect‐Related Optical Behavior in Surface Modified TiO2 Nanostructures , 2005 .

[50]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[51]  Haoshen Zhou,et al.  Synthesis of self-standing mesoporous nanocrystalline titania-phosphorus oxide composite films. , 2004, Chemical communications.

[52]  R. Amal,et al.  Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis , 2004 .

[53]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[54]  Hua Chun Zeng,et al.  Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. , 2004, The journal of physical chemistry. B.

[55]  Haoshen Zhou,et al.  Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization , 2004, Nature materials.

[56]  T. Umebayashi,et al.  Fabrication of TiO2 photocatalysts by oxidative annealing of TiC , 2003 .

[57]  Fuyou Li,et al.  An expanded conjugation photosensitizer with two different adsorbing groups for solar cells , 2003 .

[58]  G. Kästle,et al.  A Micellar Route to Ordered Arrays of Magnetic Nanoparticles: From Size‐Selected Pure Cobalt Dots to Cobalt–Cobalt Oxide Core–Shell Systems , 2003 .

[59]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[60]  A. Mills,et al.  Photodecomposition of ozone sensitised by a film of titanium dioxide on glass , 2003 .

[61]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[62]  Y. Konishi,et al.  A patterned TiO(2)(anatase)/TiO(2)(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. , 2002, Angewandte Chemie.

[63]  Juan Bisquert,et al.  Analysis of the Mechanisms of Electron Recombination in Nanoporous TiO2 Dye-Sensitized Solar Cells. Nonequilibrium Steady-State Statistics and Interfacial Electron Transfer via Surface States , 2002 .

[64]  J. Hupp,et al.  Interfacial Charge Transfer and Colloidal Semiconductor Dye-Sensitization: Mechanism Assessment via Stark Emission Spectroscopy , 2002 .

[65]  G. Stucky,et al.  Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. , 2002, Angewandte Chemie.

[66]  Y. Qian,et al.  Synthesis of closed PbS nanowires with regular geometric morphologies , 2002 .

[67]  Shaomin Liu,et al.  SYNTHESIS OF SINGLE-CRYSTALLINE TIO2 NANOTUBES , 2002 .

[68]  Jiaguo Yu,et al.  Effect of surface microstructure on the photoinduced hydrophilicity of porous TiO2 thin films , 2002 .

[69]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[70]  K. Stevenson,et al.  Monitoring Molecular Adsorption on High-Area Titanium Dioxide via Modulated Diffraction of Visible Light , 2001 .

[71]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[72]  P. F. Greenfield,et al.  Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water , 2000 .

[73]  Arthur J. Frank,et al.  Effect of the Surface-State Distribution on Electron Transport in Dye-Sensitized TiO2 Solar Cells: Nonlinear Electron-Transport Kinetics , 2000 .

[74]  J. Banfield,et al.  Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation , 2000 .

[75]  EQCM investigations of dye-functionalized nanocrystalline titanium dioxide electrode/solution interfaces: Does luminescence report directly on interfacial electron transfer kinetics? , 1999 .

[76]  I. Lauermann,et al.  Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cell , 1999 .

[77]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[78]  J. Kiwi,et al.  Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid , 1998 .

[79]  Joseph T. Hupp,et al.  Semiconductor-Based Interfacial Electron-Transfer Reactivity: Decoupling Kinetics from pH-Dependent Band Energetics in a Dye-Sensitized Titanium Dioxide/Aqueous Solution System , 1996 .

[80]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[81]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[82]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[83]  Marye Anne Fox,et al.  In situ photoluminescence of titania as a probe of photocatalytic reactions , 1989 .

[84]  Norikazu Aikawa,et al.  Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous vycor glass , 1985 .

[85]  C. Gout,et al.  Electronic band structure of titanium dioxide , 1977 .

[86]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[87]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .