Multi-resolution dynamic meshes with arbitrary deformations

Multi-resolution techniques and models have been shown to be effective for the display and transmission of large static geometric object. Dynamic environments with internally deforming models and scientific simulations using dynamic meshes pose greater challenges in terms of time and space, and need the development of similar solutions. In this paper we introduce the T-DAG, an adaptive multi-resolution representation for dynamic meshes with arbitrary deformations including attribute, position, connectivity and topology changes. T-DAG stands for Time-dependent Directed Acyclic Graph which defines the structure supporting this representation. We also provide an incremental algorithm (in time) for constructing the T-DAG representation of a given input mesh. This enables the traversal and use of the multi-resolution dynamic model for partial playback while still constructing new time-steps.

[1]  Chandrajit L. Bajaj,et al.  Topology preserving data simplification with error bounds , 1998, Comput. Graph..

[2]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[3]  Charles D. Hansen,et al.  Isosurface extraction in time-varying fields using a Temporal Branch-on-Need Tree (T-BON) , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[4]  Reinhard Klein,et al.  Multiresolution representations for surfaces meshes , 1997 .

[5]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[6]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[7]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[8]  David Salesin,et al.  Multiresolution video , 1996, SIGGRAPH.

[9]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[10]  Pat Morin,et al.  Progressive TINs: algorithms and applications , 1997, GIS '97.

[11]  E. J. Stollnitz,et al.  Wavelets for Computer Graphics : A Primer , 1994 .

[12]  Kwan-Liu Ma,et al.  A fast volume rendering algorithm for time-varying fields using a time-space partitioning (TSP) tree , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[13]  Leila De Floriani,et al.  Building and traversing a surface at variable resolution , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[14]  Mark de Berg,et al.  On levels of detail in terrains , 1995, SCG '95.

[15]  Markus H. Gross,et al.  Progressive tetrahedralizations , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[16]  Hugues Hoppe Smooth view-dependent level-of-detail control and its application to terrain rendering , 1998 .

[17]  Jed Lengyel,et al.  Compression of time-dependent geometry , 1999, SI3D.

[18]  Leila De Floriani,et al.  Data Structures for Simplicial Multi-complexes , 1999, SSD.

[19]  Hugues Hoppe,et al.  New quadric metric for simplifying meshes with appearance attributes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[20]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[21]  William J. Schroeder A topology modifying progressive decimation algorithm , 1997 .

[22]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[23]  Bernd Hamann,et al.  Constructing Hierarchies for Triangle Meshes , 1998, IEEE Trans. Vis. Comput. Graph..