A three-dimensional map of the Milky Way using classical Cepheid variable stars

Cepheids help to map the Galaxy Cepheid variable stars pulsate, which allows their distances to be determined from the periodic variations in brightness. Skowron et al. constructed a catalog of thousands of Cepheids covering a large fraction of the Milky Way. They combined optical and infrared data to determine the stars' pulsation periods and mapped the distribution of Cepheids and the associated young stellar populations across the Galaxy. Their three-dimensional map demonstrates the warping of the Milky Way's disc. A simple model of star formation in the spiral arms reproduced the positions and ages of the Cepheid population. Science, this issue p. 478 Mapping the Milky Way in three dimensions using Cepheid variable stars shows the Galaxy’s warped disk. The Milky Way is a barred spiral galaxy, with physical properties inferred from various tracers informed by the extrapolation of structures seen in other galaxies. However, the distances of these tracers are measured indirectly and are model-dependent. We constructed a map of the Milky Way in three dimensions, based on the positions and distances of thousands of classical Cepheid variable stars. This map shows the structure of our Galaxy’s young stellar population and allows us to constrain the warped shape of the Milky Way’s disk. A simple model of star formation in the spiral arms reproduces the observed distribution of Cepheids.

[1]  R. Poleski,et al.  Rotation Curve of the Milky Way from Classical Cepheids , 2018, The Astrophysical Journal.

[2]  David G. Turner,et al.  Characteristics of the Galaxy according to Cepheids , 2009, Monthly Notices of the Royal Astronomical Society.

[3]  R. Indebetouw,et al.  The Spitzer/GLIMPSE Surveys: A New View of the Milky Way , 2009 .

[4]  A. Bajkova,et al.  Analysis of the Z distribution of young objects in the Galactic thin disk , 2015, 1511.08438.

[5]  A. Robin,et al.  The Galactic warp revealed by Gaia DR2 kinematics , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[6]  S. Joshi,et al.  Study of open clusters within 1.8 kpc and understanding the Galactic structure , 2016, 1606.06425.

[7]  J. Binney,et al.  Unexpected stellar velocity distribution in the warped Galactic disk , 1998, Nature.

[8]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[9]  L. Szabados,et al.  Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects , 2017, 1703.01131.

[10]  J. Yao,et al.  Determination of the Sun's offset from the Galactic plane using pulsars , 2017, 1704.01272.

[11]  J. J. González-Vidal,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[12]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars I: The Serendipitous Survey , 2018, 1803.01001.

[13]  D. Froebrich,et al.  Properties of star clusters – II. Scaleheight evolution of clusters , 2014, 1407.4611.

[14]  Y. Murata,et al.  The Cygnus A Jet: Parabolic Streamlines up to Kiloparsec Scales , 2019, The Astrophysical Journal.

[15]  Noriyuki Matsunaga,et al.  Cepheid variables in the flared outer disk of our galaxy , 2014, Nature.

[16]  A. Robin,et al.  The Milky Way's external disc constrained by 2MASS star counts , 2008, 0812.3739.

[17]  U. Cambridge,et al.  Outer structure of the Galactic warp and flare: explaining the Canis Major over-density , 2006, astro-ph/0603385.

[18]  K. Stassun,et al.  Evidence for a Systematic Offset of −80 μas in the Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.

[19]  D. York,et al.  Stellar Population Studies with the SDSS. I. The Vertical Distribution of Stars in the Milky Way , 2001 .

[20]  R. Poleski,et al.  OGLE Collection of Galactic Cepheids , 2018, 1810.09489.

[21]  B. Jiang,et al.  A PRECISE DETERMINATION OF THE MID-INFRARED INTERSTELLAR EXTINCTION LAW BASED ON THE APOGEE SPECTROSCOPIC SURVEY , 2016, 1602.02928.

[22]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[23]  A. Miller,et al.  THE SYNTHETIC-OVERSAMPLING METHOD: USING PHOTOMETRIC COLORS TO DISCOVER EXTREMELY METAL-POOR STARS , 2015, 1505.01854.

[24]  J. Zinn,et al.  Confirmation of the Gaia DR2 Parallax Zero-point Offset Using Asteroseismology and Spectroscopy in the Kepler Field , 2018, The Astrophysical Journal.

[25]  C. D. Laney,et al.  On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk , 2014, 1403.6128.

[26]  E. Mamajek,et al.  Revised geometric estimates of the North Galactic Pole and the Sun's height above the Galactic mid-plane , 2016, 1610.08125.

[27]  H. E. Delgado,et al.  RR Lyrae stars as standard candles in the Gaia Data Release 2 Era , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  A. Udalski,et al.  OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment , 2015, 1504.05966.

[29]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[30]  R. Poleski,et al.  DECIPHERING THE 3D STRUCTURE OF THE OLD GALACTIC BULGE FROM THE OGLE RR LYRAE STARS , 2014, 1412.4121.

[31]  K. Menten,et al.  Mapping spiral structure on the far side of the Milky Way , 2017, Science.

[32]  Reinhard Genzel,et al.  An Update on Monitoring Stellar Orbits in the Galactic Center , 2016, 1611.09144.

[33]  Eugene Magnier,et al.  A THREE-DIMENSIONAL MAP OF MILKY WAY DUST , 2015, 1507.01005.

[34]  A. Bajkova,et al.  The z distribution of hydrogen clouds and masers with kinematic distances , 2016, 1601.06741.

[35]  Shu Wang,et al.  The Near-infrared Optimal Distances Method Applied to Galactic Classical Cepheids Tightly Constrains Mid-infrared Period–Luminosity Relations , 2017, 1711.06966.

[36]  D. Majaess,et al.  Classical Cepheids and the spiral structure of the milky way , 2015, Astronomy Letters.

[37]  V. Kaspi,et al.  THE McGILL MAGNETAR CATALOG , 2013, 1309.4167.

[38]  M. Schultheis,et al.  Modelling the Galactic Interstellar Extinction Distribution in Three Dimensions , 2005, astro-ph/0604427.

[39]  R. de Grijs,et al.  Vvv dr1: the first data release of the milky way bulge and southern plane from the near-infrared eso public survey vista variables in the via lactea , 2011, 1111.5511.

[40]  K. Ulaczyk,et al.  The OGLE Collection of Variable Stars. Classical, Type II, and Anomalous Cepheids toward the Galactic Center , 2017, 1712.01307.

[41]  N. Mowlavi,et al.  Populations of rotating stars. - I. Models from 1.7 to 15 Msun at Z = 0.014, 0.006, and 0.002 with {\Omega}/{\Omega}crit between 0 and 1 , 2013, 1303.2321.

[42]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[43]  K. Cunha,et al.  LITHIUM IN OPEN CLUSTER RED GIANTS HOSTING SUBSTELLAR COMPANIONS , 2015, 1512.08558.

[44]  A. Cabrera-Lavers,et al.  Old stellar Galactic disc in near-plane regions according to 2MASS: Scales, cut-off, flare and warp , 2002, astro-ph/0208236.

[45]  N. N. Kireeva,et al.  General catalogue of variable stars: Version GCVS 5.1 , 2017 .

[46]  M. Cropper,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[47]  Douglas P. Finkbeiner,et al.  ON GALACTIC DENSITY MODELING IN THE PRESENCE OF DUST EXTINCTION , 2015, 1509.06751.

[48]  K. Ulaczyk,et al.  The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. I. Classical Cepheids in the Large Magellanic Cloud , 2008, 0808.2210.

[49]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[50]  R. Poleski,et al.  Large Variety of New Pulsating Stars in the OGLE-III Galactic Disk Fields , 2013, 1311.5894.

[51]  D. Spergel,et al.  Three-dimensional Structure of the Milky Way Disk: The Distribution of Stars and Dust beyond 0.35 R☉ , 2001, astro-ph/0101259.

[52]  L. Szabados,et al.  Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids , 2009, 0908.3561.

[53]  F. Royer,et al.  Rotational velocities of A-type stars - IV. Evolution of rotational velocities , 2012, 1201.2052.

[54]  S. Smartt,et al.  A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-impact Last Alert System (ATLAS) , 2018, The Astronomical Journal.

[55]  The Spiral Structure of the Outer Milky Way in Hydrogen , 2006, Science.

[56]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[57]  B. Koo,et al.  Tracing the Spiral Structure of the Outer Milky Way with Dense Atomic Hydrogen Gas , 2017, 1706.10084.

[58]  A. Robin,et al.  Evolution over time of the Milky Way's disc shape , 2017, 1701.00475.

[59]  J. Kerp,et al.  Dark matter in the Milky Way II. The HI gas distribution as a tracer of the gravitational potential , 2007, 0704.3925.

[60]  R. Poleski,et al.  The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. XIV. Classical and Type II Cepheids in the Galactic Bulge , 2011, 1112.1406.

[61]  Stefano Casertano,et al.  Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant , 2018, The Astrophysical Journal.

[62]  G. Meynet,et al.  On the Effect of Rotation on Populations of Classical Cepheids II. Pulsation Analysis for Metallicities 0.014, 0.006, and 0.002 , 2016, 1604.05691.

[63]  K. Kuijken Dark matter in the Milky Way , 1995 .

[64]  R. Indebetouw,et al.  GLIMPSE. I. An SIRTF Legacy Project to Map the Inner Galaxy , 2003, astro-ph/0306274.

[65]  Y. Sofue,et al.  Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: I. The H I Disk , 2003, astro-ph/0304338.

[66]  M. McSwain,et al.  A STELLAR ROTATION CENSUS OF B STARS: FROM ZAMS TO TAMS , 2010, 1008.1761.

[67]  J. Vallée A guided map to the spiral arms in the galactic disk of the Milky Way , 2017, 1711.05228.