Structure of a Conserved Golgi Complex-targeting Signal in Coronavirus Envelope Proteins

Background: Coronavirus envelope (CoV E) proteins have a predicted β-coil-β motif reported to target the Golgi complex. Results: This conserved domain forms β-structure on its own but is α-helical in the context of full-length SARS-CoV E protein. Conclusion: This domain is potentially involved in large conformational transitions. Significance: This is the first structural data of the extramembrane domain of any coronavirus E protein. Coronavirus envelope (CoV E) proteins are ∼100-residue polypeptides with at least one channel-forming α-helical transmembrane (TM) domain. The extramembrane C-terminal tail contains a completely conserved proline, at the center of a predicted β-coil-β motif. This hydrophobic motif has been reported to constitute a Golgi-targeting signal or a second TM domain. However, no structural data for this or other extramembrane domains in CoV E proteins is available. Herein, we show that the E protein in the severe acute respiratory syndrome virus has only one TM domain in micelles, whereas the predicted β-coil-β motif forms a short membrane-bound α-helix connected by a disordered loop to the TM domain. However, complementary results suggest that this motif is potentially poised for conformational change or in dynamic exchange with other conformations.

[1]  T. Wolfsberg,et al.  ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. , 1995, Developmental biology.

[2]  Cbrister,et al.  Empirical Correlation between Protein Backbone Conformation and Ca and C @ 13 C Nuclear Magnetic Resonance Chemical Shifts , 2022 .

[3]  A. Gorbalenya,et al.  A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae , 2003, Archives of Virology.

[4]  Elliot J. Lefkowitz,et al.  Virus taxonomy: classification and nomenclature of viruses , 2012 .

[5]  B. Hogue,et al.  Coronavirus Structural Proteins and Virus Assembly , 2008 .

[6]  K. Subbarao,et al.  A Severe Acute Respiratory Syndrome Coronavirus That Lacks the E Gene Is Attenuated In Vitro and In Vivo , 2006, Journal of Virology.

[7]  Andrew J. Miles,et al.  A reference dataset for the analyses of membrane protein secondary structures and transmembrane residues using circular dichroism spectroscopy , 2011, Bioinform..

[8]  D. Case,et al.  Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database , 2001, Journal of biomolecular NMR.

[9]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[10]  R. Baric,et al.  A Live Attenuated Severe Acute Respiratory Syndrome Coronavirus Is Immunogenic and Efficacious in Golden Syrian Hamsters , 2008, Journal of Virology.

[11]  T. Wolff,et al.  Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. , 2012, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[12]  C. Machamer,et al.  Infectious Bronchitis Virus E Protein Is Targeted to the Golgi Complex and Directs Release of Virus-Like Particles , 2000, Journal of Virology.

[13]  Alexander E. Gorbalenya,et al.  Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans , 2012, mBio.

[14]  H. Laude,et al.  Coronavirus Pseudoparticles Formed with Recombinant M and E Proteins Induce Alpha Interferon Synthesis by Leukocytes , 1998, Journal of Virology.

[15]  P. Gage,et al.  SARS coronavirus E protein forms cation-selective ion channels , 2004, Virology.

[16]  C. Sanders,et al.  The impact of window functions on NMR-based paramagnetic relaxation enhancement measurements in membrane proteins. , 2010, Biochimica et biophysica acta.

[17]  C. Machamer,et al.  Identification of a Golgi Complex-Targeting Signal in the Cytoplasmic Tail of the Severe Acute Respiratory Syndrome Coronavirus Envelope Protein , 2011, Journal of Virology.

[18]  J. Torres,et al.  The Transmembrane Oligomers of Coronavirus Protein E , 2005, Biophysical Journal.

[19]  C. Machamer,et al.  The Hydrophobic Domain of Infectious Bronchitis Virus E Protein Alters the Host Secretory Pathway and Is Important for Release of Infectious Virus , 2010, Journal of Virology.

[20]  R. Baric,et al.  Heterologous Gene Expression from Transmissible Gastroenteritis Virus Replicon Particles , 2002, Journal of Virology.

[21]  A. Gorbalenya,et al.  Severe Acute Respiratory Syndrome Coronavirus Phylogeny: toward Consensus , 2004, Journal of Virology.

[22]  S. Perlman,et al.  Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice , 2008, Virology.

[23]  G. Wagner,et al.  Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. , 2000, Biochemistry.

[24]  R. Baric,et al.  Emerging human coronaviruses--disease potential and preparedness. , 2012, The New England journal of medicine.

[25]  J. Torres,et al.  A cost-effective method for simultaneous homo-oligomeric size determination and monodispersity conditions for membrane proteins. , 2011, Analytical biochemistry.

[26]  A. Osterhaus,et al.  Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. , 2012, The New England journal of medicine.

[27]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[28]  J. Torres,et al.  Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel , 2009, PLoS pathogens.

[29]  H. Vennema,et al.  Assembly of the Coronavirus Envelope: Homotypic Interactions between the M Proteins , 2000, Journal of Virology.

[30]  Pierre Tufféry,et al.  PEP-FOLD: an online resource for de novo peptide structure prediction , 2009, Nucleic Acids Res..

[31]  C. Machamer,et al.  The Cytoplasmic Tail of Infectious Bronchitis Virus E Protein Directs Golgi Targeting , 2002, Journal of Virology.

[32]  L. Enjuanes,et al.  Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein , 2011, Virology.

[33]  D. Myszka,et al.  Improving biosensor analysis , 1999, Journal of molecular recognition : JMR.

[34]  Javier Ortego,et al.  Generation of a Replication-Competent, Propagation-Deficient Virus Vector Based on the Transmissible Gastroenteritis Coronavirus Genome , 2002, Journal of Virology.

[35]  F. Fischer,et al.  Analysis of Constructed E Gene Mutants of Mouse Hepatitis Virus Confirms a Pivotal Role for E Protein in Coronavirus Assembly , 1998, Journal of Virology.

[36]  C. Machamer,et al.  The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction , 2003, Virology.

[37]  B. Mahboub Respiratory Disease and Infection - A New Insight , 2013 .

[38]  Ruth Nussinov,et al.  Geometry‐based flexible and symmetric protein docking , 2005, Proteins.

[39]  Marta L. DeDiego,et al.  Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Regulates Cell Stress Response and Apoptosis , 2011, PLoS pathogens.

[40]  A. Bax,et al.  Empirical correlation between protein backbone conformation and C.alpha. and C.beta. 13C nuclear magnetic resonance chemical shifts , 1991 .

[41]  G. Kochendoerfer,et al.  Total chemical synthesis of the integral membrane protein influenza A virus M2: role of its C-terminal domain in tetramer assembly. , 1999, Biochemistry.

[42]  Margaret A. Johnson,et al.  Nuclear Magnetic Resonance Structure of the N-Terminal Domain of Nonstructural Protein 3 from the Severe Acute Respiratory Syndrome Coronavirus , 2007, Journal of Virology.

[43]  S. Siddell The Coronaviridae: An Introduction , 1995 .

[44]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[45]  J. Torres,et al.  Model of a Putative Pore: The Pentameric α-Helical Bundle of SARS Coronavirus E Protein in Lipid Bilayers , 2006, Biophysical Journal.

[46]  Y. Ishii,et al.  Alignment of Biopolymers in Strained Gels: A New Way To Create Detectable Dipole−Dipole Couplings in High-Resolution Biomolecular NMR , 2000 .

[47]  S. Rubino,et al.  Coronavirus respiratory illness in Saudi Arabia. , 2012, Journal of infection in developing countries.

[48]  J. Hus,et al.  A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings , 2001, Journal of biomolecular NMR.

[49]  P. Masters,et al.  Evolved Variants of the Membrane Protein Can Partially Replace the Envelope Protein in Murine Coronavirus Assembly , 2010, Journal of Virology.

[50]  Lee Whitmore,et al.  DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data , 2004, Nucleic Acids Res..

[51]  M. Buchmeier,et al.  Human Coronavirus EMC Does Not Require the SARS-Coronavirus Receptor and Maintains Broad Replicative Capability in Mammalian Cell Lines , 2012, mBio.

[52]  Jaume Torres,et al.  Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids , 2012, Virology.

[53]  Y. Guan,et al.  Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage , 2003, Journal of Molecular Biology.

[54]  J. Torres,et al.  Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein , 2007, Protein science : a publication of the Protein Society.

[55]  L. Enjuanes,et al.  The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated , 2010, Virology.

[56]  W C Johnson,et al.  Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. , 1986, Analytical biochemistry.

[57]  P. Roy,et al.  Efficient assembly and release of SARS coronavirus‐like particles by a heterologous expression system , 2004, FEBS Letters.

[58]  D. X. Liu,et al.  The Missing Link in Coronavirus Assembly RETENTION OF THE AVIAN CORONAVIRUS INFECTIOUS BRONCHITIS VIRUS ENVELOPE PROTEIN IN THE PRE-GOLGI COMPARTMENTS AND PHYSICAL INTERACTION BETWEEN THE ENVELOPE AND MEMBRANE PROTEINS* , 2001 .

[59]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[60]  H. Vennema,et al.  Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. , 1996, The EMBO journal.

[61]  P. Masters,et al.  Exceptional Flexibility in the Sequence Requirements for Coronavirus Small Envelope Protein Function , 2006, Journal of Virology.

[62]  Jincun Zhao,et al.  Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease , 2010, Virology.

[63]  L. Hernandez,et al.  Mutational Analysis of the Candidate Internal Fusion Peptide of the Avian Leukosis and Sarcoma Virus Subgroup A Envelope Glycoprotein , 1998, Journal of Virology.

[64]  R. Bruzzone,et al.  The SARS coronavirus E protein interacts with the PALS1 and alters tight junction formation and epithelial morphogenesis , 2010, Molecular biology of the cell.

[65]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[66]  Ad Bax,et al.  Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. , 2003, Journal of the American Chemical Society.

[67]  J. Torres,et al.  Structural Flexibility of the Pentameric SARS Coronavirus Envelope Protein Ion Channel , 2008, Biophysical Journal.

[68]  H. Mantsch,et al.  Noise in Fourier self-deconvolution. , 1981, Applied optics.

[69]  K. Fleming Standardizing the free energy change of transmembrane helix-helix interactions. , 2002, Journal of molecular biology.

[70]  H. Koerten,et al.  The Production of Recombinant Infectious DI-Particles of a Murine Coronavirus in the Absence of Helper Virus , 1996, Virology.

[71]  J. Bushweller,et al.  Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. , 2006, Journal of the American Chemical Society.

[72]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[73]  P. Gage,et al.  Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication , 2006, Virology.

[74]  P. Schuck On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. , 2003, Analytical biochemistry.

[75]  A. Sanchez,et al.  Mutational Analysis of the Putative Fusion Domain of Ebola Virus Glycoprotein , 1999, Journal of Virology.

[76]  L. Enjuanes,et al.  Recombinant Live Vaccines to Protect Against the Severe Acute Respiratory Syndrome Coronavirus , 2010, Replicating Vaccines.

[77]  Clay Bracken,et al.  A method for efficient isotopic labeling of recombinant proteins , 2001, Journal of biomolecular NMR.

[78]  J. Torres,et al.  Expression and purification of coronavirus envelope proteins using a modified β-barrel construct , 2012, Protein Expression and Purification.

[79]  C. Machamer,et al.  A Single Polar Residue and Distinct Membrane Topologies Impact the Function of the Infectious Bronchitis Coronavirus E Protein , 2012, PLoS pathogens.