SEQUIN Multiscale Imaging of Mammalian Central Synapses Reveals Loss of Synaptic Connectivity Resulting from Diffuse Traumatic Brain Injury

The complex microconnectivity of the mammalian brain underlies its computational abilities, and its vulnerability to injury and disease. It has been challenging to illuminate the features of this synaptic network due in part to the small size and exceptionally dense packing of its elements. Here we describe a rapid and accessible super-resolution imaging and image analysis workflow—SEQUIN—that identifies, quantifies, and characterizes central synapses in animal models and in humans, enabling automated volumetric imaging of mesoscale synaptic networks without the laborious production of large histological arrays. Using SEQUIN, we identify delayed cortical synapse loss resulting from diffuse traumatic brain injury. Similar synapse loss is observed in an Alzheimer disease model, where SEQUIN mesoscale mapping of excitatory synapses across the hippocampus identifies region-specific synaptic vulnerability to neurodegeneration. These results establish a novel, easily implemented and robust nano-to-mesoscale synapse quantification and molecular characterization method. They furthermore identify a mechanistic link—synaptopathy—between Alzheimer neurodegeneration and its best-established epigenetic risk factor, brain trauma.

[1]  S. Cappa Neurodegeneration , 2019, Journal of the Neurological Sciences.

[2]  D. Holtzman,et al.  Alzheimer Disease: An Update on Pathobiology and Treatment Strategies , 2019, Cell.

[3]  Jörg Enderlein,et al.  Image scanning microscopy. , 2019, Current opinion in chemical biology.

[4]  J. Simon Wiegert,et al.  Freeze-frame imaging of synaptic activity using SynTagMA , 2019, Nature Communications.

[5]  S. Hell,et al.  Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling , 2018, Proceedings of the National Academy of Sciences.

[6]  E. Fransén,et al.  Architecture of the Mouse Brain Synaptome , 2018, Neuron.

[7]  A. Reiner,et al.  Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert , 2018, Neuron.

[8]  Terrance T. Kummer,et al.  modCHIMERA: a novel murine closed-head model of moderate traumatic brain injury , 2018, Scientific reports.

[9]  Maneesh C. Patel,et al.  Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury , 2018, Brain : a journal of neurology.

[10]  A. Nordström,et al.  Traumatic brain injury and the risk of dementia diagnosis: A nationwide cohort study , 2018, PLoS medicine.

[11]  U. Kržič,et al.  The new 2D Superresolution mode for ZEISS Airyscan , 2017, Nature Methods.

[12]  R. Cortese,et al.  Functional mapping of brain synapses by the enriching activity-marker SynaptoZip , 2017, Nature Communications.

[13]  O. Shupliakov,et al.  Intersectin associates with synapsin and regulates its nanoscale localization and function , 2017, Proceedings of the National Academy of Sciences.

[14]  J DeFelipe,et al.  Volume electron microscopy of the distribution of synapses in the neuropil of the juvenile rat somatosensory cortex , 2017, Brain Structure and Function.

[15]  J. Povlishock,et al.  Mild Traumatic Brain Injury Evokes Pyramidal Neuron Axon Initial Segment Plasticity and Diffuse Presynaptic Inhibitory Terminal Loss , 2017, Front. Cell. Neurosci..

[16]  Emanuele Giorgi,et al.  Spatial point patterns:methodology and applications with R , 2017 .

[17]  K. Blennow,et al.  Astroglial activation and altered amyloid metabolism in human repetitive concussion , 2017, Neurology.

[18]  M. Ikonomovic,et al.  Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders , 2017, Ageing Research Reviews.

[19]  Alexander A. Alemi,et al.  Light Microscopy at Maximal Precision , 2017, 1702.07336.

[20]  Talley J. Lambert,et al.  Navigating challenges in the application of superresolution microscopy , 2017, The Journal of cell biology.

[21]  Attila Losonczy,et al.  Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1 , 2016, Neuron.

[22]  Thomas A. Blanpied,et al.  A transsynaptic nanocolumn aligns neurotransmitter release to receptors , 2016, Nature.

[23]  J. Lichtman,et al.  From Cajal to Connectome and Beyond. , 2016, Annual review of neuroscience.

[24]  T. Spires-Jones,et al.  Synaptic pathology: A shared mechanism in neurological disease , 2016, Ageing Research Reviews.

[25]  J. Coyle,et al.  EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain , 2016, Neurobiology of Disease.

[26]  David K. Menon,et al.  Traumatic Axonal Injury: Mechanisms and Translational Opportunities , 2016, Trends in Neurosciences.

[27]  D. Klenerman,et al.  PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits , 2016, Scientific Reports.

[28]  Meng-Tsen Ke,et al.  Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent. , 2016, Cell reports.

[29]  Raj Kumar Gupta,et al.  Synaptic Mechanisms of Blast-Induced Brain Injury , 2016, Front. Neurol..

[30]  Joseph Huff The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution , 2015, Nature Methods.

[31]  T. Sejnowski,et al.  Nanoconnectomic upper bound on the variability of synaptic plasticity , 2015, eLife.

[32]  Michael Eisenstein,et al.  Super-resolve me: from micro to nano , 2015, Nature.

[33]  Terrance T. Kummer,et al.  Experimental subarachnoid haemorrhage results in multifocal axonal injury. , 2015, Brain : a journal of neurology.

[34]  G. Knott,et al.  Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation , 2015, eLife.

[35]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[36]  Jeff W. Lichtman,et al.  Clarifying Tissue Clearing , 2015, Cell.

[37]  Ann C McKee,et al.  The Neuropathology of Chronic Traumatic Encephalopathy , 2015, Brain pathology.

[38]  D. Brody,et al.  Array tomography for the detection of non-dilated, injured axons in traumatic brain injury , 2015, Journal of Neuroscience Methods.

[39]  Kristina D Micheva,et al.  Mapping Synapses by Conjugate Light-Electron Array Tomography , 2015, The Journal of Neuroscience.

[40]  Tianyi Mao,et al.  Live Imaging of Endogenous PSD-95 Using ENABLED: A Conditional Strategy to Fluorescently Label Endogenous Proteins , 2014, The Journal of Neuroscience.

[41]  Ö. Gürcan Effective connectivity at synaptic level in humans: a review and future prospects , 2014, Biological Cybernetics.

[42]  Wai Hang Cheng,et al.  Merging pathology with biomechanics using CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration): a novel, surgery-free model of traumatic brain injury , 2014, Molecular Neurodegeneration.

[43]  V. Casagrande,et al.  Metabotropic glutamate receptor 5 shows different patterns of localization within the parallel visual pathways in macaque and squirrel monkeys , 2014, Eye and brain.

[44]  Concha Bielza,et al.  Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis , 2014, Front. Neuroanat..

[45]  May-Britt Moser,et al.  Functional diversity along the transverse axis of hippocampal area CA1 , 2014, FEBS letters.

[46]  S. Itohara,et al.  Single App knock-in mouse models of Alzheimer's disease , 2014, Nature Neuroscience.

[47]  J. Bourne,et al.  Presynaptic Ultrastructural Plasticity Along CA3→CA1 Axons During Long‐Term Potentiation in Mature Hippocampus , 2013, The Journal of comparative neurology.

[48]  Charisse N. Winston,et al.  Controlled cortical impact results in an extensive loss of dendritic spines that is not mediated by injury-induced amyloid-beta accumulation. , 2013, Journal of neurotrauma.

[49]  A. Vortmeyer,et al.  Metabotropic Glutamate Receptor 5 Is a Coreceptor for Alzheimer Aβ Oligomer Bound to Cellular Prion Protein , 2013, Neuron.

[50]  G. Tesco,et al.  Molecular mechanisms of cognitive dysfunction following traumatic brain injury , 2013, Front. Aging Neurosci..

[51]  M. Freichel,et al.  Synaptobrevin2 is the v-SNARE required for cytotoxic T-lymphocyte lytic granule fusion , 2013, Nature Communications.

[52]  E. Bigler Traumatic brain injury, neuroimaging, and neurodegeneration , 2012, Front. Hum. Neurosci..

[53]  Richard D Emes,et al.  Evolution of synapse complexity and diversity. , 2012, Annual review of neuroscience.

[54]  Stephen J. Smith,et al.  Deep molecular diversity of mammalian synapses: why it matters and how to measure it , 2012, Nature Reviews Neuroscience.

[55]  Adam W. Bero,et al.  Bidirectional Relationship between Functional Connectivity and Amyloid-β Deposition in Mouse Brain , 2012, The Journal of Neuroscience.

[56]  J. Morrison,et al.  The ageing cortical synapse: hallmarks and implications for cognitive decline , 2012, Nature Reviews Neuroscience.

[57]  Davi D Bock,et al.  Volume electron microscopy for neuronal circuit reconstruction , 2012, Current Opinion in Neurobiology.

[58]  Anirvan Ghosh,et al.  A Critical Role for GluN2B-Containing NMDA Receptors in Cortical Development and Function , 2011, Neuron.

[59]  D. Brody,et al.  Distinct Temporal and Anatomical Distributions of Amyloid-β and Tau Abnormalities following Controlled Cortical Impact in Transgenic Mice , 2011, PloS one.

[60]  D. Holtzman,et al.  Controlled Cortical Impact Traumatic Brain Injury in 3xTg-AD Mice Causes Acute Intra-Axonal Amyloid-β Accumulation and Independently Accelerates the Development of Tau Abnormalities , 2011, The Journal of Neuroscience.

[61]  J. Morris,et al.  Alzheimer’s Disease: The Challenge of the Second Century , 2011, Science Translational Medicine.

[62]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[63]  Kristina D. Micheva,et al.  Single-Synapse Analysis of a Diverse Synapse Population: Proteomic Imaging Methods and Markers , 2010, Neuron.

[64]  F. Benfenati,et al.  The synapsins: Key actors of synapse function and plasticity , 2010, Progress in Neurobiology.

[65]  W. Klein,et al.  Deleterious Effects of Amyloid β Oligomers Acting as an Extracellular Scaffold for mGluR5 , 2010, Neuron.

[66]  G. Mallucci Prion neurodegeneration , 2009, Prion.

[67]  Kristina D. Micheva,et al.  Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques , 2009, Proceedings of the National Academy of Sciences.

[68]  Jeremy D. Schmahmann,et al.  A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale , 2009, PLoS Comput. Biol..

[69]  C. Léránth,et al.  Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates , 2008, Proceedings of the National Academy of Sciences.

[70]  T. Branco,et al.  Local Dendritic Activity Sets Release Probability at Hippocampal Synapses , 2008, Neuron.

[71]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[72]  A. El-Husseini,et al.  Excitation Control: Balancing PSD-95 Function at the Synapse , 2008, Frontiers in molecular neuroscience.

[73]  Kristina D. Micheva,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[74]  F. Schmitt,et al.  Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment , 2007, Neurology.

[75]  Bin Zhang,et al.  Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model , 2007, Neuron.

[76]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[77]  J. Csernansky,et al.  Spatial relationship between synapse loss and β‐amyloid deposition in Tg2576 mice , 2007, The Journal of comparative neurology.

[78]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[79]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[80]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[81]  P. Dixon Ripley's K Function , 2006 .

[82]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[83]  J. Langlois,et al.  The Epidemiology and Impact of Traumatic Brain Injury: A Brief Overview , 2006, The Journal of head trauma rehabilitation.

[84]  A. Nikolakopoulou,et al.  BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo , 2005, Development.

[85]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[86]  S. Scheff,et al.  Synaptogenesis in the hippocampal CA1 field following traumatic brain injury. , 2005, Journal of neurotrauma.

[87]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[88]  S. Scheff,et al.  Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies , 2003, Neurobiology of Aging.

[89]  P. Sondel,et al.  Natural Killer Cells & Innate Immunity , 2003 .

[90]  Y. Smith,et al.  Group I Metabotropic Glutamate Receptors in the Monkey Striatum: Subsynaptic Association with Glutamatergic and Dopaminergic Afferents , 2003, The Journal of Neuroscience.

[91]  S Rabe-Hesketh,et al.  Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication , 2003, Journal of neurology, neurosurgery, and psychiatry.

[92]  D. Selkoe Alzheimer's Disease Is a Synaptic Failure , 2002, Science.

[93]  Joseph E LeDoux,et al.  The Group I Metabotropic Glutamate Receptor mGluR5 Is Required for Fear Memory Formation and Long-Term Potentiation in the Lateral Amygdala , 2002, The Journal of Neuroscience.

[94]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[95]  J. Storm-Mathisen,et al.  The Expression of Vesicular Glutamate Transporters Defines Two Classes of Excitatory Synapse , 2001, Neuron.

[96]  D. Borchelt,et al.  Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. , 2001, Biomolecular engineering.

[97]  J. Guralnik,et al.  Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias , 2000, Neurology.

[98]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[99]  D. Baltimore,et al.  Degeneration of neurons, synapses, and neuropil and glial activation in a murine Atm knockout model of ataxia-telangiectasia. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[100]  P. Somogyi,et al.  Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1α, mGluR2 and mGluR5, relative to neurotransmitter release sites , 1997, Journal of Chemical Neuroanatomy.

[101]  久保 武,et al.  ラット内耳における metabotropic glutamate receptor の発現 , 1997 .

[102]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[103]  Allan I. Levey,et al.  Familial Alzheimer's Disease–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In Vivo , 1996, Neuron.

[104]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[105]  K. Harris,et al.  Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses , 1995, Neuropharmacology.

[106]  O. Castejón,et al.  Synaptic degenerative changes in human traumatic brain edema. An electron microscopic study of cerebral cortical biopsies. , 1995, Journal of neurosurgical sciences.

[107]  J. Lisman,et al.  Who's been nibbling on my PSD: Is it LTD? , 1994, Journal of Physiology-Paris.

[108]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[109]  K. Jellinger,et al.  Synaptic Pathology of Alzheimer's Disease a , 1993, Annals of the New York Academy of Sciences.

[110]  D. Price,et al.  Synapse loss in the temporal lobe in Alzheimer's disease , 1993, Annals of neurology.

[111]  G. Thiel,et al.  Synapsin I, Synapsin II, and Synaptophysin: Marker Proteins of Synaptic Vesicles , 1993, Brain pathology.

[112]  D. Salmon,et al.  Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment , 1991, Annals of neurology.

[113]  S. DeKosky,et al.  Synapse loss in frontal cortex biopsies in Alzheimer's disease: Correlation with cognitive severity , 1990, Annals of neurology.

[114]  E. Masliah,et al.  Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease , 1989, Neuroscience Letters.

[115]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[116]  D. Mann,et al.  A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease , 1987, Journal of the Neurological Sciences.

[117]  P. Andersen,et al.  A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea‐pig hippocampal slices in vitro , 1980, The Journal of physiology.

[118]  S. Ferguson,et al.  Metabotropic glutamate receptors and neurodegenerative diseases. , 2017, Pharmacological research.

[119]  N. Chauhan Chronic neurodegenerative consequences of traumatic brain injury. , 2014, Restorative neurology and neuroscience.

[120]  A. Faden,et al.  Chronic Neurodegeneration After Traumatic Brain Injury: Alzheimer Disease, Chronic Traumatic Encephalopathy, or Persistent Neuroinflammation? , 2014, Neurotherapeutics.

[121]  A. McKee,et al.  The spectrum of disease in chronic traumatic encephalopathy. , 2013, Brain : a journal of neurology.

[122]  T. Deerinck,et al.  NCMIR methods for 3D EM: a new protocol for preparation of biological specimens for serial block face scanning electron microscopy , 2010 .

[123]  E. Masliah,et al.  Immunoelectron microscopic study of synaptic pathology in Alzheimer's disease , 2004, Acta Neuropathologica.

[124]  C. Sheppard Super-resolution in confocal imaging , 1988 .

[125]  B. Hyman,et al.  Edinburgh Research Explorer Alzheimer's disease , 2022 .

[126]  J. Lübke,et al.  The Mossy Fiber Bouton: the “Common” or the “Unique” Synapse? , 2010, Front. Syn. Neurosci..

[127]  M. Croning,et al.  Characterization of the proteome, diseases and evolution of the human postsynaptic density , 2011, Nature Neuroscience.

[128]  Spatial Patterns: Methodology and Applications with R , 2022 .