Automating the design of tokamak experiment scenarios

Abstract The real-time control of plasma position, shape and current in a tokamak has to be ensured by a number of electrical circuits consisting of voltage suppliers and axisymmetric coils. Finding good target voltages/currents for the control systems is a very laborious, non-trivial task due to non-linear effects of plasma evolution. We introduce here an optimal control formulation to tackle this task and present in detail the main ingredients for finding numerical solutions: the finite element discretization, accurate linearizations and Sequential Quadratic Programming. Case studies for the tokamaks WEST and HL-2M highlight the flexibility and broad scope of the proposed optimal control formulation.

[1]  Jacques Blum,et al.  Plasma equilibrium evolution at the resistive diffusion timescale , 1984 .

[2]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[3]  Francesca Rapetti,et al.  Finite element methods on composite meshes for tuning plasma equilibria in tokamaks , 2018, Journal of Mathematics in Industry.

[4]  S. Jardin,et al.  Dynamic modeling of transport and positional control of tokamaks , 1986 .

[5]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[6]  Leslie Greengard,et al.  A fast, high-order solver for the Grad-Shafranov equation , 2012, J. Comput. Phys..

[7]  Harold Grad,et al.  Classical Diffusion in a Tokomak , 1970 .

[8]  Laurent Villard,et al.  Computational challenges in magnetic-confinement fusion physics , 2016, Nature Physics.

[9]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[10]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[11]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[12]  Blaise Faugeras,et al.  FEM-BEM coupling methods for Tokamak plasma axisymmetric free-boundary equilibrium computations in unbounded domains , 2017, J. Comput. Phys..

[13]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[14]  E. Joffrin,et al.  WEST Physics Basis , 2015 .

[15]  David Douai,et al.  Magnetic configuration and plasma start-up in the WEST tokamak , 2018 .

[16]  J. Blum Numerical simulation and optimal control in plasma physics , 1989 .

[17]  H. P. Furth,et al.  Magnetic Confinement Fusion , 1990, Science.

[18]  Carl R. Sovinec,et al.  Solving the Grad-Shafranov equation with spectral elements , 2014, Comput. Phys. Commun..

[19]  F. Hofmann,et al.  Plasma shape and position control in highly elongated tokamaks , 1990 .

[20]  Gabriel N. Gatica,et al.  The Uncoupling of Boundary Integral and Finite Element Methods for Nonlinear Boundary Value Problems , 1995 .

[21]  Virginie Grandgirard,et al.  Modelisation de l'equilibre d'un plasma de tokamak , 1999 .

[22]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[23]  R. R. Khayrutdinov,et al.  Studies of plasma equilibrium and transport in a Tokamak fusion device with the inverse-variable technique , 1993 .

[24]  Sylvain Brémond,et al.  Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications , 2015 .

[25]  Qiang Li,et al.  The component development status of HL-2M tokamak , 2015 .

[26]  Alfredo Pironti,et al.  Magnetic Control of Tokamak Plasmas , 2008 .