Mass spectrometry–based proteomics in cell biology

The global analysis of protein composition, modifications, and dynamics are important goals in cell biology. Mass spectrometry (MS)–based proteomics has matured into an attractive technology for this purpose. Particularly, high resolution MS methods have been extremely successful for quantitative analysis of cellular and organellar proteomes. Rapid advances in all areas of the proteomic workflow, including sample preparation, MS, and computational analysis, should make the technology more easily available to a broad community and turn it into a staple methodology for cell biologists.

[1]  M. Cristina Cardoso,et al.  A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins*S , 2008, Molecular & Cellular Proteomics.

[2]  Blagoy Blagoev,et al.  A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling , 2003, Nature Biotechnology.

[3]  Sixue Chen Rapid protein identification using direct infusion nanoelectrospray ionization mass spectrometry , 2006, Proteomics.

[4]  Robert E. Kearney,et al.  A HUPO test sample study reveals common problems in mass spectrometry-based proteomics , 2009, Nature Methods.

[5]  Forest M White,et al.  Quantitative phosphoproteomics by mass spectrometry: Past, present, and future , 2008, Proteomics.

[6]  F. Boisvert,et al.  A Quantitative Proteomics Analysis of Subcellular Proteome Localization and Changes Induced by DNA Damage , 2009, Molecular & Cellular Proteomics.

[7]  W. Ens,et al.  Hybrid quadrupole/time-of-flight mass spectrometers for analysis of biomolecules. , 2005, Methods in enzymology.

[8]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[9]  F. White Quantitative phosphoproteomic analysis of signaling network dynamics. , 2008, Current opinion in biotechnology.

[10]  Anthony K. L. Leung,et al.  Nucleolar proteome dynamics , 2005, Nature.

[11]  R. Aebersold,et al.  Analysis of protein complexes using mass spectrometry , 2007, Nature Reviews Molecular Cell Biology.

[12]  Pei Wang,et al.  Bioinformatics Original Paper a Suite of Algorithms for the Comprehensive Analysis of Complex Protein Mixtures Using High-resolution Lc-ms , 2022 .

[13]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[14]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[15]  Shu-Hui Chen,et al.  Stable-isotope dimethyl labeling for quantitative proteomics. , 2003, Analytical chemistry.

[16]  O. Jensen Interpreting the protein language using proteomics , 2006, Nature Reviews Molecular Cell Biology.

[17]  M. Wilm Quantitative proteomics in biological research , 2009, Proteomics.

[18]  John R Yates,et al.  Nuclear Membrane Proteins with Potential Disease Links Found by Subtractive Proteomics , 2003, Science.

[19]  Sándor Suhai,et al.  Fragmentation pathways of protonated peptides. , 2005, Mass spectrometry reviews.

[20]  B. Chait,et al.  The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism , 2000 .

[21]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[22]  J. Yates,et al.  A model for random sampling and estimation of relative protein abundance in shotgun proteomics. , 2004, Analytical chemistry.

[23]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[24]  Lukas N. Mueller,et al.  Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics , 2009, Cell.

[25]  Matthias Mann,et al.  Bioinformatics analysis of mass spectrometry‐based proteomics data sets , 2009, FEBS letters.

[26]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[27]  Kathryn S Lilley,et al.  Mapping organelle proteins and protein complexes in Drosophila melanogaster. , 2009, Journal of proteome research.

[28]  Natalie I. Tasman,et al.  A guided tour of the Trans‐Proteomic Pipeline , 2010, Proteomics.

[29]  Rod B. Watson,et al.  Localization of Organelle Proteins by Isotope Tagging (LOPIT)*S , 2004, Molecular & Cellular Proteomics.

[30]  Sung Kyu Park,et al.  A quantitative analysis software tool for mass spectrometry–based proteomics , 2008, Nature Methods.

[31]  M. Mann,et al.  SILAC Mouse for Quantitative Proteomics Uncovers Kindlin-3 as an Essential Factor for Red Blood Cell Function , 2008, Cell.

[32]  D. Lauffenburger,et al.  Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks , 2007, Proceedings of the National Academy of Sciences.

[33]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[34]  A. Makarov,et al.  Interfacing the orbitrap mass analyzer to an electrospray ion source. , 2003, Analytical chemistry.

[35]  N. Kitteringham,et al.  Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. , 2009, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[36]  John R. Yates,et al.  The biological impact of mass-spectrometry-based proteomics , 2007, Nature.

[37]  R. Aebersold,et al.  Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans , 2009, Nature.

[38]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[39]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[40]  Robert J Beynon,et al.  Strategies for measuring dynamics: the temporal component of proteomics. , 2005, Methods of biochemical analysis.

[41]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[42]  M. Mann,et al.  Super-SILAC mix for quantitative proteomics of human tumor tissue , 2010, Nature Methods.

[43]  Bernhard Kuster,et al.  Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors , 2007, Nature Biotechnology.

[44]  N. Grishin,et al.  Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. , 2006, Molecular cell.

[45]  D. Matthews,et al.  Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells , 2009, Molecular & Cellular Proteomics.

[46]  Yixue Li,et al.  Regulation of Cellular Metabolism by Protein Lysine Acetylation , 2010, Science.

[47]  Daphne Koller,et al.  A Complex-based Reconstruction of the Saccharomyces cerevisiae Interactome *S⃞ , 2009, Molecular & Cellular Proteomics.

[48]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[49]  Guo-Ping Zhao,et al.  Acetylation of Metabolic Enzymes Coordinates Carbon Source Utilization and Metabolic Flux , 2010, Science.

[50]  K. Resing,et al.  Comparison of Label-free Methods for Quantifying Human Proteins by Shotgun Proteomics*S , 2005, Molecular & Cellular Proteomics.

[51]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[52]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[53]  K. Resing,et al.  Mapping protein post-translational modifications with mass spectrometry , 2007, Nature Methods.

[54]  Makarov,et al.  Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis , 2000, Analytical chemistry.

[55]  I. Matic,et al.  Identification of SUMO target proteins by quantitative proteomics. , 2009, Methods in molecular biology.

[56]  J. Griffiths,et al.  A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS) , 2009, Nature Protocols.

[57]  F. McLafferty,et al.  Top‐down MS, a powerful complement to the high capabilities of proteolysis proteomics , 2007, The FEBS journal.

[58]  Rovshan G Sadygov,et al.  Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book , 2004, Nature Methods.

[59]  A. Makarov,et al.  Orbitrap Mass Analyzer – Overview and Applications in Proteomics , 2006, Proteomics.

[60]  F. Boisvert,et al.  Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes , 2008, The Journal of cell biology.

[61]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[62]  J. Yates,et al.  Direct analysis of protein complexes using mass spectrometry , 1999, Nature Biotechnology.

[63]  M. Mann,et al.  Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[65]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[66]  Ruedi Aebersold,et al.  Quantitative interaction proteomics using mass spectrometry , 2009, Nature Methods.

[67]  Ruedi Aebersold,et al.  The study of macromolecular complexes by quantitative proteomics , 2003, Nature Genetics.

[68]  Reinout Raijmakers,et al.  Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics , 2009, Nature Protocols.

[69]  Alexander Makarov,et al.  Orbitrap Mass Analyzer - Overview and Applications , 2006 .

[70]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[71]  Sean R. Collins,et al.  Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae*S , 2007, Molecular & Cellular Proteomics.

[72]  Anna Shevchenko,et al.  Exit from Mitosis Is Triggered by Tem1-Dependent Release of the Protein Phosphatase Cdc14 from Nucleolar RENT Complex , 1999, Cell.

[73]  Ileana M Cristea,et al.  Fluorescent Proteins as Proteomic Probes*S , 2005, Molecular & Cellular Proteomics.

[74]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[75]  A. Desai,et al.  A Combined Approach for the Localization and Tandem Affinity Purification of Protein Complexes from Metazoans , 2005, Science's STKE.

[76]  M. Mann,et al.  Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein*S , 2005, Molecular & Cellular Proteomics.

[77]  E. Marcotte,et al.  Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation , 2007, Nature Biotechnology.

[78]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[79]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[80]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[81]  M. Mann,et al.  Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. , 2009, Cell metabolism.

[82]  M. Mann,et al.  Proteomic characterization of the human centrosome by protein correlation profiling , 2003, Nature.

[83]  J. Yates,et al.  Proteomics of organelles and large cellular structures , 2005, Nature Reviews Molecular Cell Biology.

[84]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[85]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[86]  M. Mann,et al.  Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. , 2010, Immunity.