On the Spherical Slice Transform
暂无分享,去创建一个
[1] B. Rubin. The Vertical Slice Transform in Spherical Tomography , 2018, 1807.07689.
[2] Boris Rubin,et al. Inversion formulas for the spherical Radon transform and the generalized cosine transform , 2002, Adv. Appl. Math..
[3] Ahmed Abouelaz,et al. Sur la transformation de Radon de la sphère $S^d$ , 1993 .
[4] Tobias Faust,et al. Reconstructive Integral Geometry , 2016 .
[5] Reconstruction of functions on the sphere from their integrals over hyperplane sections , 2018, Analysis and Mathematical Physics.
[6] B. Rubin. Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis , 2015 .
[7] Non-geodesic Spherical Funk Transforms with One and Two Centers , 2019, 1904.11457.
[8] P. Funk. Über Flächen mit lauter geschlossenen geodätischen Linien , 1913 .
[9] Non-central Funk-Radon transforms: Single and multiple , 2020 .
[10] Yehonatan Salman. Recovering functions defined on the unit sphere by integration on a special family of sub-spheres , 2017 .
[11] Á. Kurusa. Support theorems for totally geodesic Radon transforms on constant curvature spaces , 1994 .
[12] M. Quellmalz. A generalization of the Funk–Radon transform , 2017 .
[13] S. Helgason. Integral Geometry and Radon Transforms , 2010 .
[14] M. Agranovsky,et al. On two families of Funk-type transforms , 2019, Analysis and Mathematical Physics.
[15] M. Quellmalz. The Funk–Radon transform for hyperplane sections through a common point , 2018, Analysis and Mathematical Physics.
[16] B. Rubin. GENERALIZED MINKOWSKI-FUNK TRANSFORMS AND SMALL DENOMINATORS ON THE SPHERE , 2000 .
[17] B. Rubin. On the Funk-Radon-Helgason Inversion Method in Integral Geometry , 2012, 1207.5178.
[18] S. G. Gindikin,et al. Selected Topics in Integral Geometry , 2003 .
[19] R. Hielscher,et al. Reconstructing a function on the sphere from its means along vertical slices , 2016 .
[20] Support theorems for Funk-type isodistant Radon transforms on constant curvature spaces , 2021, Annali di Matematica Pura ed Applicata (1923 -).
[21] B. Rubin. Radon transforms and Gegenbauer–Chebyshev integrals, II; examples , 2017 .
[22] An inversion formula for the spherical transform in $$S^{2}$$S2 for a special family of circles of integration , 2016 .
[23] Boris Rubin,et al. Convolution–backprojection method for the k-plane transform, and Calderón's identity for ridgelet transforms , 2004 .