On the Spherical Slice Transform

We study the spherical slice transform which assigns to a function on the $n$-dimensional unit sphere the integrals of that function over cross-sections of the sphere by $k$-dimensional affine planes passing through the north pole. These transforms are well known when $k=n$. We consider all $1< k < n+1$ and obtain an explicit formula connecting the spherical slice transform with the classical Radon-John transform over $(k-1)$-dimensional planes in the $n$-dimensional Euclidean space. Using this connection, known facts for the Radon-John transform, like inversion formulas, support theorem, representation on zonal functions, and others, can be reformulated for the spherical slice transform.

[1]  B. Rubin The Vertical Slice Transform in Spherical Tomography , 2018, 1807.07689.

[2]  Boris Rubin,et al.  Inversion formulas for the spherical Radon transform and the generalized cosine transform , 2002, Adv. Appl. Math..

[3]  Ahmed Abouelaz,et al.  Sur la transformation de Radon de la sphère $S^d$ , 1993 .

[4]  Tobias Faust,et al.  Reconstructive Integral Geometry , 2016 .

[5]  Reconstruction of functions on the sphere from their integrals over hyperplane sections , 2018, Analysis and Mathematical Physics.

[6]  B. Rubin Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis , 2015 .

[7]  Non-geodesic Spherical Funk Transforms with One and Two Centers , 2019, 1904.11457.

[8]  P. Funk Über Flächen mit lauter geschlossenen geodätischen Linien , 1913 .

[9]  Non-central Funk-Radon transforms: Single and multiple , 2020 .

[10]  Yehonatan Salman Recovering functions defined on the unit sphere by integration on a special family of sub-spheres , 2017 .

[11]  Á. Kurusa Support theorems for totally geodesic Radon transforms on constant curvature spaces , 1994 .

[12]  M. Quellmalz A generalization of the Funk–Radon transform , 2017 .

[13]  S. Helgason Integral Geometry and Radon Transforms , 2010 .

[14]  M. Agranovsky,et al.  On two families of Funk-type transforms , 2019, Analysis and Mathematical Physics.

[15]  M. Quellmalz The Funk–Radon transform for hyperplane sections through a common point , 2018, Analysis and Mathematical Physics.

[16]  B. Rubin GENERALIZED MINKOWSKI-FUNK TRANSFORMS AND SMALL DENOMINATORS ON THE SPHERE , 2000 .

[17]  B. Rubin On the Funk-Radon-Helgason Inversion Method in Integral Geometry , 2012, 1207.5178.

[18]  S. G. Gindikin,et al.  Selected Topics in Integral Geometry , 2003 .

[19]  R. Hielscher,et al.  Reconstructing a function on the sphere from its means along vertical slices , 2016 .

[20]  Support theorems for Funk-type isodistant Radon transforms on constant curvature spaces , 2021, Annali di Matematica Pura ed Applicata (1923 -).

[21]  B. Rubin Radon transforms and Gegenbauer–Chebyshev integrals, II; examples , 2017 .

[22]  An inversion formula for the spherical transform in $$S^{2}$$S2 for a special family of circles of integration , 2016 .

[23]  Boris Rubin,et al.  Convolution–backprojection method for the k-plane transform, and Calderón's identity for ridgelet transforms , 2004 .