Biocleaning of Cultural Heritage stone surfaces and frescoes: which delivery system can be the most appropriate?

The use of the advanced biotechnology of microbiological systems for the biological cleaning of Cultural Heritage (CH) has been recently improved and optimized taking into account different factors. Biocleaning systems have been indeed applied to historic buildings, statue,s and frescoes. Such application has developed new techniques and optimised and refined the existing systems. These systems remove altered forms like sulfate and nitrate crusts and organic substances like animal glue in a more effective, less invasive way than the traditional cleaning techniques. This review focuses on several delivery systems (sepiolite, hydrobiogel-97, cotton wool, carbogel, mortar and alginate beads, agar, and arbocel) used for the biocleaning of Cultural Heritage, comparing their main properties and characteristics, making a critical evaluation on how easy they can be applied, and on their future potentiality as ready-to-use and risk-free formulates. Therefore, this review will help conservation scientists, conservator-restorers, and researchers in the field to choose the most appropriate delivery system for any specific applications.

[1]  C. Sorlini,et al.  Art‐loving bugs: The resurrection of Spinello Aretino from Pisa's cemetery , 2005, Proteomics.

[2]  Francesca Cappitelli,et al.  Improved Methodology for Bioremoval of Black Crusts on Historical Stone Artworks by Use of Sulfate-Reducing Bacteria , 2006, Applied and Environmental Microbiology.

[3]  R. Delgado,et al.  Precipatation of calcium carbonate by Vibrio spp. from an inland saltern , 1994 .

[4]  G. Ranalli,et al.  The safety of biocleaning technologies for cultural heritage , 2014, Front. Microbiol..

[5]  A. Sprocati,et al.  Microbe-based technology for a novel approach to conservation and restoration , 2012 .

[6]  R. Delgado,et al.  Precipitation of calcium carbonate byDeleya halophila in media containing NaCl as sole salt , 1991, Current Microbiology.

[7]  R. Mitchell,et al.  Cultural heritage microbiology : fundamental studies in conservation science , 2010 .

[8]  O. Ciferri,et al.  Of Microbes and Art , 2000 .

[9]  Dario Camuffo,et al.  Microclimate for Cultural Heritage , 1998 .

[10]  W. Verstraete,et al.  Biocatalytical processes on concrete: bacterial cleaning and repair , 2005 .

[11]  Vasco Fassina,et al.  Proceedings of the 9th International Congress on Deterioration and Conservation of Stone , 2000 .

[12]  José Luis Regidor Ros,et al.  Biocleaning of animal glue on wall paintings by Pseudomonas stutzeri , 2013 .

[13]  A. B. Blazquez,et al.  Evaluation of the effect of some biocides against organisms isolated from historic monuments , 2000 .

[14]  G. Kobrin A Practical manual on microbiologically influenced corrosion , 1993 .

[15]  Adinarayana R. Punuru,et al.  The sulfation of marble and the treatment of gypsum crusts , 1989 .

[16]  José Luis Regidor Ros,et al.  Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri , 2013 .

[17]  Antonio Sansonetti,et al.  Advantages of Using Microbial Technology over Traditional Chemical Technology in Removal of Black Crusts from Stone Surfaces of Historical Monuments , 2007, Applied and Environmental Microbiology.

[18]  P. Cremonesi,et al.  Gel rigidi di Agar per il trattamento di pulitura di manufatti in gesso = Use of Rigid Agar Gels for Cleaning Plaster Objects , 2008 .

[19]  Claudia Sorlini,et al.  Influence of atmospheric pollutants on the biodeterioration of stone , 2000 .

[20]  C. Sorlini,et al.  Successful combination of chemical and biological treatments for the cleaning of stone artworks , 2013 .

[21]  Peter Brimblecombe,et al.  The effects of air pollution on the built environment , 2003 .

[22]  M. P. Nugari,et al.  Plant Biology for cultural heritage. , 2007 .

[23]  W. Verstraete,et al.  Microbial carbonate precipitation in construction materials: A review , 2010 .

[24]  Gonzalo Gomez Alarcon,et al.  Biodeterioro de monumentos y bioremediación: estado actual y perspectivas futuras , 2013 .

[25]  Thomas P. Curtis,et al.  Estimating prokaryotic diversity and its limits , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  E. Beltrami,et al.  La pulitura dei dipinti murali:uno studio di applicabilità di sistemi tradizionali e sistemi addensati con gel acquosi di poliacrilato , 2012 .

[27]  Mary-Lou E. Florian,et al.  Plant Biology for Cultural Heritage: Biodeterioration and Conservation , 2009 .

[28]  L. Giacomucci,et al.  Feasibility of Removing Surface Deposits on Stone Using Biological and Chemical Remediation Methods , 2010, Microbial Ecology.

[29]  Giancarlo Ranalli,et al.  New frontiers in the microbial bio-cleaning of artworks , 2012 .

[30]  A. Nováková,et al.  Use of biocides for the control of fungal outbreaks in subterranean environments: the case of the Lascaux Cave in France. , 2012, Environmental science & technology.

[31]  Richard Wolbers,et al.  Cleaning Painted Surfaces: Aqueous Methods , 2007 .

[32]  Piero Baglioni,et al.  Micelle, microemulsions, and gels for the conservation of cultural heritage. , 2014, Advances in colloid and interface science.

[33]  Mounir Maaloum,et al.  Pore size of agarose gels by atomic force microscopy , 1997, Electrophoresis.

[34]  Paolo Cremonesi,et al.  Rigid Gels and Enzyme Cleaning , 2012 .

[35]  Roberto Pini,et al.  A variable pulse width Nd:YAG laser for conservation , 2003 .

[36]  Cesáreo Sáiz-Jiménez,et al.  Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buidlings , 1997 .

[37]  Peter Brimblecombe,et al.  Damage to Buildings from Future Climate and Pollution , 2007 .

[38]  O. Salvadori,et al.  Biodeterioration Processes in Relation to Cultural heritage materials , 2008 .

[39]  Geneviève Orial,et al.  The biomineralization: a new process to protect calcareous stone; applied to historic monuments , 1993 .

[40]  Federica Valentini,et al.  New bio-cleaning strategies on porous building materials affected by biodeterioration event , 2010 .

[41]  Marta Oriola-Folch,et al.  Extended Abstract—Cleaning Issues for Nine Francesc Artigau Pop Art Paintings , 2013 .

[42]  C. Sorlini,et al.  Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes , 2005, Journal of applied microbiology.

[43]  Lucia Toniolo,et al.  Setup of a sustainable indoor cleaning methodology for the sculpted stone surfaces of the Duomo of Milan , 2014, Heritage Science.

[44]  C. Sorlini,et al.  Deterioration and bioremediation of fresco: A case-study , 2003 .

[45]  Willy Verstraete,et al.  Cleaning of concrete fouled by lichens with the aid of Thiobacilli , 2005 .

[46]  C. Sorlini,et al.  Bioconservation of the marble base of the Pietà Rondanini by Michelangelo Buonarroti , 2005 .

[47]  Federica Villa,et al.  Rapid evaluation of three biocide treatments against the cyanobacterium Nostoc sp. PCC 9104 by color changes , 2014, Annals of Microbiology.

[48]  C. Sorlini,et al.  The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment , 2011 .

[49]  Ian T. Paulsen,et al.  Environmental Microbiology , 2022, Methods in Molecular Biology.

[50]  Claudia Sorlini,et al.  The use of microorganisms for the removal of sulphates on artistic stoneworks , 1997 .

[51]  Ian Harris,et al.  Long term change in salt weathering of stone monuments in north-west France , 2008 .

[52]  M. Santoro,et al.  Smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. , 2011, The journal of physical chemistry. B.

[53]  S. Sotgiu,et al.  Wet Treatments of Works of Art on Paper with Rigid Gellan Gels , 2011 .

[54]  R. Atlas,et al.  MICROBIAL CALCIFICATION OF GYPSUM-ROCK AND SULFATED MARBLE , 1988 .

[55]  Antonio Sansonetti,et al.  A CLEANING METHOD BASED ON THE USE OF AGAR GELS: NEW TESTS AND PERSPECTIVES , 2012 .

[56]  M. Colombini,et al.  Fast biocleaning of mediaeval frescoes using viable bacterial cells , 2012 .

[57]  N. Y. Biodeterioro(de(monumentos(y(biorremediación:(estado(actual( y(perspectivas(futuras( , 2013 .

[58]  O. Ciferri,et al.  Of microbes and art : the role of microbial communities in the degradation and protection of cultural heritage , 2000 .

[59]  C. Saiz-Jimenez ORGANIC POLLUTANTS IN THE BUILT ENVIRONMENT AND THEIR EFFECT ON THE MICROORGANISMS , 2003 .

[60]  O. Salvadori,et al.  Ecological analysis and biodeterioration processes over time at the Hieroglyphic Stairway in the Copàn (Honduras) archaeological site , 2005 .

[61]  Martin E. Weaver,et al.  Stone Cleaning and the Nature, Soiling, and Decay Mechanisms of Stone , 1992 .

[62]  C. Sorlini,et al.  The Biobrush Project for Bioremediation of Heritage Stone , 2008 .

[63]  Apartado Biodeterioration vs Biodegradation : the Role of Microorganisms in the Removal of Pollutants Deposited on Historic Buildings , 2003 .

[64]  Geneviève Orial,et al.  Bacterial Carbonatogenesis and Applications to Preservation and Restoration of Historic Property , 2000 .

[65]  José Luis Regidor Ros,et al.  Ensayos de biolimpieza con bacterias en pinturas murales , 2010 .

[66]  J. M. Yáñez-Limón,et al.  Measurement of the Sol–Gel Transition Temperature in Agar , 2008 .

[67]  J. Braams,et al.  Biodeterioration of stone: a review , 2000 .

[68]  G. Scherer Stress from crystallization of salt , 2004 .

[69]  T. Kajiwara,et al.  Physical and Chemical Characterization of Agar Polysaccharides Extracted from the Thai and Japanese Species of Gracilaria , 2006 .

[70]  B. Giussani,et al.  Monuments as sampling surfaces of recent traffic pollution , 2011, Environmental science and pollution research international.

[71]  R. Groppetti,et al.  Evaluation of the effect of cleaning on the morphological properties of ancient paper surface , 2013, Cellulose.

[72]  T. Zhao,et al.  Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells , 2013 .

[73]  R. Delgado,et al.  Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations , 1988, Current Microbiology.

[74]  P. Tiano,et al.  Calcium oxalate decomposing microorganisms: a biological approach to the oxalate patinas elimination , 1996 .

[75]  Girish Neelakanta,et al.  The Use of Metagenomic Approaches to Analyze Changes in Microbial Communities , 2013, Microbiology insights.

[76]  Fernando M.A. Henriques,et al.  Proceedings of the 7th International Congress on Deterioration and Conservation of Stone , 1992 .

[77]  A. Gorbushina,et al.  Biodecay of cultural heritage as a space/time-related ecological situation — an evaluation of a series of studies , 2000 .

[78]  F. Gorel Assessment of agar gel loaded with micro-emulsion for the cleaning of porous surfaces , 2010 .

[79]  A. Boronat,et al.  Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon , 1973, Nature.

[80]  C Saiz-Jimenez,et al.  Air Pollution and Cultural Heritage , 2004 .

[81]  Sudhir Kumar Jain,et al.  Biodeterioration of Archaeological Monuments and Approach for Restoration , 2016 .

[82]  Federica Villa,et al.  Comparing the bioremoval of black crusts on colored artistic lithotypes of the Cathedral of Florence with chemical and laser treatment , 2011 .

[83]  C. Kennedy,et al.  Quantitative assessment of decay mechanisms in Scottish building sandstones , 2008 .

[84]  Mark Jones,et al.  Heritage Microbiology and Science , 2008 .

[85]  Claudia Sorlini,et al.  Bioremediation of Cultural Heritage: Removal of Sulphates, Nitrates and Organic Substances , 2000 .

[86]  Eric Doehne,et al.  Stone Conservation: An Overview of Current Research , 1998 .

[87]  Sonia Tortajada hernando,et al.  Cleaning plaster surfaces with agar-agar gels: evaluation of the technique , 2013 .

[88]  K. G. Mukerji,et al.  Biodeterioration of building materials. , 1993 .

[89]  Claudia Sorlini,et al.  Biodeterioration – Including Cultural Heritage , 2009 .