Use of vehicle signature analysis and lexicographic optimization for vehicle reidentification on freeways

Abstract The vehicle reidentification problem is the task of matching a vehicle detected at one location with the same vehicle detected at another location from a feasible set of candidate vehicles detected at the other location. This paper formulates and solves the vehicle reidentification problem as a lexicographic optimization problem. Lexicographic optimization is a preemptive multi-objective formulation, and this lexicographic optimization formulation combines lexicographic goal programming, classification, and Bayesian analysis techniques. The solution of the vehicle reidentification problem has the potential to yield reliable section measures such as travel times and densities, and enables the measurement of partial dynamic origin/destination demands. Implementation of this approach using conventional surveillance infrastructure permits the development of new algorithms for ATMIS (Advanced Transportation Management and Information Systems). Freeway inductive loop data from SR-24 in Lafayette, California, demonstrates that robust results can be obtained under different traffic flow conditions.