Hollow Ring-Core Photonic Crystal Fiber With >500 OAM Modes Over 360-nm Communications Bandwidth

We propose and design a hollow As<sub>2</sub>S<sub>3</sub> ring-core photonic crystal fiber (PCF) with 514 radially fundamental orbital angular momentum (OAM) modes over 360 nm communications bandwidth across all the O, E, S, C, and L bands. The designed PCF with 40 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-radius air core and 150 nm-width As<sub>2</sub>S<sub>3</sub> ring can support eigenmodes up to HE<sub>130,1</sub> and EH<sub>128,1</sub>. The numerical analysis shows that the designed ring PCF has large effective refractive index contrast, and can transmit up to 874 OAM modes near 1.55 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>. Simulation results show that in the C and L bands, the PCF with a hollow-core radius of 40 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> and a ring width of 0.15 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> can retain an <inline-formula> <tex-math notation="LaTeX">$2.5\times 10 ^{-3}$ </tex-math></inline-formula> effective refractive index difference between the two highest order OAM modes, which achieves effective mode separation, thereby achieving stable OAM mode transmission. The <inline-formula> <tex-math notation="LaTeX">$n_{eff}$ </tex-math></inline-formula> difference between the even and odd fiber eigenmodes and the intra-mode walk-off are also carefully studied under different bending radii. The results show that higher-order OAM modes has better tolerance to the fiber bending, compared with the lower-order modes. The fiber has the potential to support ultra-high capacity OAM mode division multiplexing in the optical fiber communication systems.

[1]  Hollow Ring-Core Hybrid Photonic Crystal Fiber Supporting >500 OAM Modes Across O, E, S, C, L Bands , 2020 .

[2]  P. Sillard,et al.  Few-Mode Fibers for Mode-Division-Multiplexed Systems , 2014, Journal of Lightwave Technology.

[3]  Hongzhi Jia,et al.  Theoretical proposal of a low-loss wide-bandwidth silicon photonic crystal fiber for supporting 30 orbital angular momentum modes , 2017, PloS one.

[4]  A. Galtarossa,et al.  Coupling Effects Among Degenerate Modes in Multimode Optical Fibers , 2014, IEEE Photonics Journal.

[5]  E. M. Dianov,et al.  High-purity chalcogenide glasses for fiber optics , 2009 .

[6]  Christos Markos,et al.  Multimaterial photonic crystal fibers , 2018, OPTO.

[7]  David A. B. Miller,et al.  Communications expands its space , 2017, Nature Photonics.

[8]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[9]  A. E. Willner,et al.  Mode Properties and Propagation Effects of Optical Orbital Angular Momentum (OAM) Modes in a Ring Fiber , 2012, IEEE Photonics Journal.

[10]  S. Ramachandran,et al.  Conservation of orbital angular momentum in air core optical fibers , 2014 .

[11]  Gang Liu,et al.  Theoretical Analysis of a 750-nm Bandwidth Hollow-Core Ring Photonic Crystal Fiber With a Graded Structure for Transporting 38 Orbital Angular Momentum Modes , 2018, IEEE Access.

[12]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[13]  Li Zhang,et al.  Circular photonic crystal fiber supporting 110 OAM modes , 2018, Optics Communications.

[14]  Hongzhi Jia,et al.  Theoretical analysis of hollow ring-core optical fibre for transmitting orbital angular momentum modes , 2017 .

[15]  Knight,et al.  Photonic band gap guidance in optical fibers , 1998, Science.

[16]  Tingyun Wang,et al.  All-fiber mode converter based on long-period fiber gratings written in few-mode fiber. , 2017, Optics letters.

[17]  Andong Wang,et al.  18  km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. , 2018, Optics letters.

[18]  Siyuan Yu,et al.  80-Channel WDM-MDM Transmission Over 50-km Ring-Core Fiber using a Compact OAM DEMUX and Modular 4×4 MIMO Equalization , 2018, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[19]  Ying Zhang,et al.  Edge-dip air core fiber for improvement of the transmission of higher-order OAM modes , 2018, Other Conferences.

[20]  Irving H. Malitson,et al.  Refractive Index of Arsenic Trisulfide , 1958 .

[21]  Christos Markos,et al.  Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms , 2014, Scientific Reports.

[22]  E. M. Dianov,et al.  Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics , 2011 .

[23]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[24]  Jian Wang,et al.  A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes) , 2014, Scientific Reports.

[25]  Sophie LaRochelle,et al.  Design, fabrication and validation of an OAM fiber supporting 36 states. , 2014, Optics express.

[26]  Jinhui Yuan,et al.  A multi-orbital-angular-momentum multi-ring micro-structured fiber with ultra-high-density and low-level crosstalk , 2016 .

[27]  Siddharth Ramachandran,et al.  13.4km OAM state propagation by recirculating fiber loop. , 2016, Optics express.

[28]  S Ramachandran,et al.  Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing , 2019, Nature Communications.

[29]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[30]  Arismar Cerqueira S,et al.  Hybrid photonic crystal fiber. , 2006, Optics express.

[31]  L. Rusch,et al.  Optical fibers for the transmission of orbital angular momentum modes , 2017 .

[32]  Yang Yue,et al.  Generation of Orbital Angular Momentum Modes Using Fiber Systems , 2019, Applied Sciences.

[33]  Ping Jiang,et al.  Broadband and low confinement loss photonic crystal fibers supporting 48 orbital angular momentum modes , 2019, International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference.

[34]  Toshio Morioka,et al.  12 mode, WDM, MIMO-free orbital angular momentum transmission. , 2018, Optics express.

[35]  L. Brilland,et al.  Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm , 2008 .

[36]  Xiaoguang Zhang,et al.  A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission , 2016, IEEE Photonics Technology Letters.

[37]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[38]  Wenbo Zhang,et al.  A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission , 2017 .

[39]  Ning Wang,et al.  Numerical analysis of a photonic crystal fiber for supporting 76 orbital angular momentum modes , 2018, Journal of Optics.

[40]  Yongxiong Ren,et al.  Air-Core Ring Fiber With >1000 Radially Fundamental OAM Modes Across O, E, S, C, and L Bands , 2020, IEEE Access.

[41]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.