Application of Approximate Pattern Matching in Two Dimensional Spaces to Grid Layout for Biochemical Network Maps

Background For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. Results We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Conclusions Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.

[1]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[3]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[4]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[5]  Xuemin Lin,et al.  A Fast and Effective Heuristic for the Feedback Arc Set Problem , 1993, Inf. Process. Lett..

[6]  David P. Dobkin,et al.  Implementing a General-Purpose Edge Router , 1997, Graph Drawing.

[7]  Bernd Meyer,et al.  Self-Organizing Graphs - A Neural Network Perspective of Graph Layout , 1998, GD.

[8]  Carola Wenk,et al.  Matching 2D patterns of protein spots , 1998, SCG '98.

[9]  Tatsuya Akutsu,et al.  Matching of Spots in 2D Electrophoresis Images. Point Matching Under Non-uniform Distortions , 1999, CPM.

[10]  Prasanna R. Kolatkar,et al.  BioJAKE: A Tool for the Creation, Visualization and Manipulation of Metabolic Pathways , 1998, Pacific Symposium on Biocomputing.

[11]  Peter D. Karp,et al.  Automated Drawing of Metabolic Pathways , 2000 .

[12]  Attila Gürsoy,et al.  Neighbourhood Preserving Load Balancing: A Self-Organizing Approach , 2000, Euro-Par.

[13]  Giuseppe Liotta,et al.  Experimental studies on graph drawing algorithms , 2000 .

[14]  Frank Schacherer,et al.  The TRANSPATH signal transduction database: a knowledge base on signal transduction networks , 2001, Bioinform..

[15]  Anton J. Enright,et al.  BioLayout-an automatic graph layout algorithm for similarity visualization , 2001, Bioinform..

[16]  Veli Mäkinen Using Edit Distance in Point-Pattern Matching , 2001, SPIRE.

[17]  Isabel Rojas,et al.  A graph layout algorithm for drawing metabolic pathways , 2001, Bioinform..

[18]  Stephen G. Kobourov,et al.  Journal of Graph Algorithms and Applications Grip: Graph Drawing with Intelligent Placement , 2022 .

[19]  Robert Giegerich,et al.  PathFinder: reconstruction and dynamic visualization of metabolic pathways , 2002, Bioinform..

[20]  Emek Demir,et al.  PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways , 2002, Bioinform..

[21]  Susumu Goto,et al.  The KEGG databases at GenomeNet , 2002, Nucleic Acids Res..

[22]  M. Tyers,et al.  Osprey: a network visualization system , 2003, Genome Biology.

[23]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[24]  Anoop Sarkar,et al.  Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003) , 2003 .

[25]  Yehuda Koren,et al.  On Spectral Graph Drawing , 2003, COCOON.

[26]  Kyungsook Han,et al.  Complexity management in visualizing protein interaction networks , 2003, ISMB.

[27]  Tatsuya Akutsu,et al.  Point matching under non-uniform distortions , 2003, Discret. Appl. Math..

[28]  Zhenjun Hu,et al.  VisANT: an online visualization and analysis tool for biological interaction data , 2004, BMC Bioinformatics.

[29]  Byungkyu Brian Park,et al.  Visualization and analysis of protein interactions , 2003, Bioinform..

[30]  Masao Nagasaki,et al.  Genomic Object Net: II. Modelling biopathways by hybrid functional Petri net with extension. , 2003, Applied bioinformatics.

[31]  D. Bu,et al.  Topological structure analysis of the protein-protein interaction network in budding yeast. , 2003, Nucleic acids research.

[32]  Naonori Ueda,et al.  Cross-Entropy Directed Embedding of Network Data , 2003, ICML.

[33]  H. Kurata,et al.  CADLIVE for constructing a large-scale biochemical network based on a simulation-directed notation and its application to yeast cell cycle. , 2003, Nucleic acids research.

[34]  Masao Nagasaki,et al.  Genomic Object Net: I. A platform for modelling and simulating biopathways. , 2003, Applied bioinformatics.

[35]  Ursula Kummer,et al.  A new dynamical layout algorithm for complex biochemical reaction networks , 2005, BMC Bioinformatics.

[36]  Michael Jünger,et al.  Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm , 2004, GD.

[37]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[38]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[39]  Emek Demir,et al.  A Compound Graph Layout Algorithm for Biological Pathways , 2004, GD.

[40]  Hongyu Zhao,et al.  VitaPad: visualization tools for the analysis of pathway data , 2005, Bioinform..

[41]  David James Sherman,et al.  ProViz: protein interaction visualization and exploration , 2005, Bioinform..

[42]  Peter J. Stuckey,et al.  Incremental Connector Routing , 2005, GD.

[43]  Peter J. Stuckey,et al.  Fast Node Overlap Removal , 2005, GD.

[44]  Hiroyuki Kurata,et al.  A grid layout algorithm for automatic drawing of biochemical networks , 2005, Bioinform..

[45]  H. Kurata,et al.  CADLIVE dynamic simulator: direct link of biochemical networks to dynamic models. , 2005, Genome research.

[46]  Michael Jünger,et al.  An Experimental Comparison of Fast Algorithms for Drawing General Large Graphs , 2005, GD.

[47]  Jens Gerken,et al.  IPSep-CoLa: An Incremental Procedure for Separation Constraint Layout of Graphs , 2006 .

[48]  Herbert M. Sauro,et al.  Supporting the SBML layout extension , 2006, Bioinform..

[49]  Emek Demir,et al.  Patikaweb: a Web interface for analyzing biological pathways through advanced querying and visualization , 2006, Bioinform..

[50]  Kim Marriott,et al.  IPSep-CoLa: An Incremental Procedure for Separation Constraint Layout of Graphs , 2006, IEEE Transactions on Visualization and Computer Graphics.

[51]  Masao Nagasaki,et al.  An efficient grid layout algorithm for biological networks utilizing various biological attributes , 2007, BMC Bioinformatics.

[52]  Amarnath Gupta,et al.  BiologicalNetworks: visualization and analysis tool for systems biology , 2006, Nucleic Acids Res..

[53]  Christian Blum,et al.  Proceedings of the 10th European conference on Evolutionary Computation in Combinatorial Optimization , 2007 .

[54]  Kim Marriott,et al.  Constrained Stress Majorization Using Diagonally Scaled Gradient Projection , 2007, Graph Drawing.

[55]  Kentaro Inoue,et al.  Extended CADLIVE: a novel graphical notation for design of biochemical network maps and computational pathway analysis , 2007, Nucleic acids research.

[56]  Tamara Munzner,et al.  TopoLayout: Multilevel Graph Layout by Topological Features , 2007, IEEE Transactions on Visualization and Computer Graphics.

[57]  Tamara Munzner,et al.  Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation , 2007, Bioinform..

[58]  Matthew Suderman,et al.  Tools for visually exploring biological networks , 2007, Bioinform..

[59]  Benno Schwikowski,et al.  GOlorize: a Cytoscape plug-in for network visualization with Gene Ontology-based layout and coloring , 2007, Bioinform..

[60]  Ludovic Cottret,et al.  Metabolic network visualization eliminating node redundance and preserving metabolic pathways , 2007, BMC Systems Biology.

[61]  Masao Nagasaki,et al.  Fast Grid Layout Algorithm for Biological Networks with Sweep Calculation , 2022 .

[62]  N. Kikuchi,et al.  CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks , 2008, Proceedings of the IEEE.

[63]  Hiroyuki Kurata,et al.  Visualizing Global Properties of Large Complex Networks , 2008, PloS one.

[64]  Falk Schreiber,et al.  Wiley Series on Bioinformatics: Computational Techniques and Engineering , 2008 .

[65]  Ulrik Brandes,et al.  An Experimental Study on Distance-Based Graph Drawing , 2009, GD.

[66]  Tamara Munzner,et al.  Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context , 2008, IEEE Transactions on Visualization and Computer Graphics.

[67]  Kim Marriott,et al.  A generic algorithm for layout of biological networks , 2009, BMC Bioinformatics.

[68]  Igor Jurisica,et al.  NAViGaTOR: Network Analysis, Visualization and Graphing Toronto , 2009, Bioinform..

[69]  Sheng He,et al.  LucidDraw: Efficiently visualizing complex biochemical networks within MATLAB , 2010, BMC Bioinformatics.

[70]  Jin-Kao Hao,et al.  A Critical Element-Guided Perturbation Strategy for Iterated Local Search , 2009, EvoCOP.

[71]  Juan Mei,et al.  Revealing network communities through modularity maximization by a contraction–dilation method , 2009 .

[72]  Masao Nagasaki,et al.  An efficient biological pathway layout algorithm combining grid-layout and spring embedder for complicated cellular location information , 2010, BMC Bioinformatics.

[73]  Karsten Klein,et al.  An Experimental Evaluation of Multilevel Layout Methods , 2010, GD.

[74]  Sergiy Butenko,et al.  Network Clustering , 2014, Encyclopedia of Social Network Analysis and Mining.

[75]  Matthew A. Hibbs,et al.  Visualization of omics data for systems biology , 2010, Nature Methods.

[76]  Sach Mukherjee,et al.  Network clustering: probing biological heterogeneity by sparse graphical models , 2011, Bioinform..

[77]  Mario Inostroza-Ponta,et al.  QAPgrid: A Two Level QAP-Based Approach for Large-Scale Data Analysis and Visualization , 2011, PloS one.

[78]  Hiroyuki Kurata,et al.  CADLIVE Converter for constructing a biochemical network map , 2011 .

[79]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.