Pore solution composition and alkali diffusion in inorganic polymer cement

Abstract Extraction of pore solutions from hardened inorganic polymer cement (“geopolymer”) paste samples shows that the pore network of these materials is rich in alkali cations and has pH > 13, with a relatively low dissolved Si concentration. However, there is little soluble Ca available in these materials to play a buffering role similar to Ca(OH) 2 or high-Ca C–S–H in hydrated Portland cements, meaning that preventing alkali loss is essential in ensuring the protection of reinforcing steel. It has been seen previously that calcium in an inorganic polymer cement binder is important in the formation of a low-permeability pore system; alkali diffusion measurements confirm these observations and highlight the role of Ca in reducing effective alkali diffusion coefficients by up to an order of magnitude. This is crucial for the durability of inorganic polymer concretes containing steel reinforcement, as it appears that the use of calcium-containing raw materials will be highly preferable.

[1]  C. Dobson,et al.  The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase , 1994 .

[2]  John L. Provis,et al.  Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion , 2009 .

[3]  J. Provis,et al.  Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[4]  J. Marchand,et al.  Calculation of ionic diffusion coefficients on the basis of migration test results , 2003 .

[5]  Shamsad Ahmad Reinforcement corrosion in concrete structures, its monitoring and service life prediction - A review , 2003 .

[6]  Volker Rose,et al.  High-resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali-activated fly ash. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[7]  P. Duxson,et al.  Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels , 2005 .

[8]  Ángel Palomo,et al.  Corrosion resistance in activated fly ash mortars , 2005 .

[9]  E. Samson,et al.  Durability of concrete — Degradation phenomena involving detrimental chemical reactions , 2008 .

[10]  J. Deventer,et al.  39K NMR of Free Potassium in Geopolymers , 2006 .

[11]  J. González,et al.  Estabilidad del estado pasivo del acero en morteros de ceniza volante activada , 2010 .

[12]  John L. Provis,et al.  Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder , 2009, Journal of Materials Science.

[13]  Francisca Puertas,et al.  Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate , 2004 .

[14]  Hamlin M. Jennings,et al.  Pore solution chemistry of alkali-activated ground granulated blast-furnace slag , 1999 .

[15]  F. Glasser,et al.  Alkali sorption by C-S-H and C-A-S-H gels: Part II. Role of alumina , 2002 .

[16]  J. Deventer,et al.  The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’ , 2007 .

[17]  D. W. Hobbs,et al.  Concrete deterioration: causes, diagnosis, and minimising risk , 2001 .

[18]  Ángel Palomo,et al.  An XRD Study of the Effect of the SiO2/Na2O Ratio on the Alkali Activation of Fly Ash , 2007 .

[19]  A. Fernández-Jiménez,et al.  A study on the passive state stability of steel embedded in activated fly ash mortars , 2008 .

[20]  Waltraud M. Kriven,et al.  The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers , 2007 .

[21]  Frank Winnefeld,et al.  Hydration of alkali-activated slag: comparison with ordinary Portland cement , 2006 .

[22]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[23]  Jeffrey J. Thomas,et al.  Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time , 2002 .

[24]  C. C. Yang,et al.  Relation between the diffusion characteristic of concrete from salt ponding test and accelerated chloride migration test , 2007 .

[25]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[26]  K. Sagoe-Crentsil,et al.  "GREEN RUST", IRON SOLUBILITY AND THE ROLE OF CHLORIDE IN THE CORROSION OF STEEL AT HIGH PH , 1993 .

[27]  Jeffrey J. Thomas,et al.  Effect of hydration temperature on the solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes , 2003 .

[28]  B. Lothenbach,et al.  Hydration of alkali-activated slag: thermodynamic modelling , 2007 .

[29]  John L. Provis,et al.  Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles , 2009, Journal of Materials Science.

[30]  Sidney Diamond,et al.  Expression and analysis of pore fluids from hardened cement pastes and mortars , 1981 .

[31]  C. C. Yang Effect of the percolated interfacial transition zone on the chloride migration coefficient of cement-based materials , 2005 .

[32]  A. Nonat,et al.  Triple-Quantum Two-Dimensional 27Al Magic Angle Nuclear Magnetic Resonance Study of the Aluminum Incorporation in Calcium Silicate Hydrates , 1998 .

[33]  I. Soroka Portland cement paste and concrete , 1979 .

[34]  T. Luping,et al.  On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete , 2007 .

[35]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[36]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .