Kernelization in parameterized computation: A survey

Parameterized computation is a new method dealing with NP-hard problems, which has attracted a lot of attentions in theoretical computer science. As a practical preprocessing method for NP-hard problems, kernelizaiton in parameterized computation has recently become an active research area. In this paper, we discuss several kernelizaiton techniques, such as crown decomposition, planar graph vertex partition, randomized methods, and kernel lower bounds, which have been used widely in the kernelization of many hard problems.

[1]  Dániel Marx,et al.  Kernelization of packing problems , 2012, SODA.

[2]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[3]  Steven Kelk,et al.  A Simple Fixed Parameter Tractable Algorithm for Computing the Hybridization Number of Two (Not Necessarily Binary) Trees , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[4]  Fedor V. Fomin,et al.  Hitting forbidden minors: Approximation and Kernelization , 2011, STACS.

[5]  Stefan Kratsch,et al.  Point Line Cover: The Easy Kernel is Essentially Tight , 2014, SODA.

[6]  Jianer Chen,et al.  Improved Parameterized Set Splitting Algorithms: A Probabilistic Approach , 2009, Algorithmica.

[7]  Jianer Chen,et al.  On the parameterized vertex cover problem for graphs with perfect matching , 2013, Science China Information Sciences.

[8]  Jianer Chen,et al.  Randomized parameterized algorithms for $$P_2$$P2-Packing and Co-Path Packing problems , 2015, J. Comb. Optim..

[9]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[10]  Yijia Chen,et al.  Lower Bounds for Kernelizations and Other Preprocessing Procedures , 2010, Theory of Computing Systems.

[11]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[12]  Anders Yeo,et al.  Kernel Bounds for Disjoint Cycles and Disjoint Paths , 2009, ESA.

[13]  Jianer Chen,et al.  Parameterized complexity of Max-lifetime Target Coverage in wireless sensor networks , 2014, Theor. Comput. Sci..

[14]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[15]  Dimitrios M. Thilikos,et al.  Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs , 2012, STACS.

[16]  Stefan Kratsch,et al.  Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..

[17]  Stefan Kratsch,et al.  Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal , 2011, TALG.

[18]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[19]  Michael R. Fellows,et al.  Crown Structures for Vertex Cover Kernelization , 2007, Theory of Computing Systems.

[20]  Rolf Niedermeier,et al.  Parameterized computational complexity of Dodgson and Young elections , 2010, Inf. Comput..

[21]  Christian Sloper,et al.  Looking at the stars , 2004, Theor. Comput. Sci..

[22]  Jianer Chen,et al.  Matching and Weighted P2-Packing: Algorithms and Kernels , 2014, Theor. Comput. Sci..

[23]  Stefan Kratsch,et al.  Two edge modification problems without polynomial kernels , 2009, Discret. Optim..

[24]  Jianer Chen,et al.  An improved kernelization for P2-packing , 2010, Inf. Process. Lett..

[25]  Stefan Kratsch,et al.  Co-Nondeterminism in Compositions: A Kernelization Lower Bound for a Ramsey-Type Problem , 2011, TALG.

[26]  Sven Koenig,et al.  Greedy localization , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[27]  Saket Saurabh,et al.  Lower bounds on kernelization , 2011, Discret. Optim..

[28]  Geevarghese Philip,et al.  The Kernelization Complexity of Connected Domination in Graphs with (no) Small Cycles , 2012, Algorithmica.

[29]  Hans L. Bodlaender,et al.  Vertex Cover Kernelization Revisited , 2010, Theory of Computing Systems.

[30]  Jianer Chen,et al.  Planar graph vertex partition for linear problem kernels , 2013, J. Comput. Syst. Sci..

[31]  Hong Liu,et al.  Parameterized complexity of control by voter selection in Maximin, Copeland, Borda, Bucklin, and Approval election systems , 2013, Theor. Comput. Sci..

[32]  Stefan Szeider,et al.  A probabilistic approach to problems parameterized above or below tight bounds , 2009, J. Comput. Syst. Sci..

[33]  Miroslav Chlebík,et al.  Crown reductions for the Minimum Weighted Vertex Cover problem , 2008, Discret. Appl. Math..

[34]  Jianer Chen,et al.  On the Minimum Link-Length Rectilinear Spanning Path Problem: Complexity and Algorithms , 2014, IEEE Transactions on Computers.

[35]  Peter Shaw,et al.  Packing Edge Disjoint Triangles: A Parameterized View , 2004, IWPEC.

[36]  Daniel Lokshtanov,et al.  Fixed Parameter Set Splitting, Linear Kernel and Improved Running Time , 2005, ACiD.

[37]  Jianer Chen,et al.  Improved linear problem kernel for planar connected dominating set , 2013, Theor. Comput. Sci..

[38]  Jianxin Wang,et al.  Parameterized complexity of Min-power multicast problems in wireless ad hoc networks , 2013, Theor. Comput. Sci..

[39]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .