Symmetry and two symmetry measures for the web and spider web graphs

Suppose G is a simple graph, $$\Gamma \le Aut(G)$$ Γ ≤ A u t ( G ) and $$\alpha \in \Gamma $$ α ∈ Γ . Define $$\mu (G)=\sum _{u \in V(G), \alpha \in \Gamma } d(u,\alpha (u))$$ μ ( G ) = ∑ u ∈ V ( G ) , α ∈ Γ d ( u , α ( u ) ) , $$\eta (G)=\sum _{u \in V(G), \alpha \in \Gamma } ( d(u,\alpha (u)))^2$$ η ( G ) = ∑ u ∈ V ( G ) , α ∈ Γ ( d ( u , α ( u ) ) ) 2 , $$GP(G)= \frac{|V(G)|}{2|\Gamma |}\mu (G)$$ G P ( G ) = | V ( G ) | 2 | Γ | μ ( G ) and $$GP^{(2)}(G) = \frac{1}{2}GP(G) + \frac{|V(G)|}{4|\Gamma |}\eta (G)$$ G P ( 2 ) ( G ) = 1 2 G P ( G ) + | V ( G ) | 4 | Γ | η ( G ) . The graph invariants GP ( G ) and $$GP^{(2)}(G)$$ G P ( 2 ) ( G ) are two recent measures for comparing symmetry of complex networks. The aim of this paper is to compute the symmetry of web and spider web graphs and then apply the structure of these groups to calculate the graph invariants GP ( G ) and $$GP^{(2)}(G)$$ G P ( 2 ) ( G ) . These numbers help us to judge on the complexity of these networks.

[1]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[2]  Tomaz Pisanski,et al.  Products of unit distance graphs , 2010, Discret. Math..

[3]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[4]  N. Tratnik The Graovac–Pisanski index of zig-zag tubulenes and the generalized cut method , 2017, Journal of Mathematical Chemistry.

[5]  Ante Graovac,et al.  On the Wiener index of a graph , 1991 .

[6]  Anthony Bonato,et al.  A course on the Web graph , 2008 .

[7]  Ali Reza Ashrafi,et al.  The modified Wiener index of some graph operations , 2016, Ars Math. Contemp..

[8]  A. Ashrafi,et al.  An Algebraic Modification of Wiener and Hyper–Wiener Indices and Their Calculations for Fullerenes , 2016 .

[9]  Sandi Klavzar,et al.  Modified Wiener index via canonical metric representation, and some fullerene patches , 2016, Ars Math. Contemp..

[10]  Mohammad A. Iranmanesh,et al.  The symmetry-moderated Wiener index of truncation graph, Thorn graph and Caterpillars , 2019, Discret. Appl. Math..

[11]  Tomaz Pisanski,et al.  Another Infinite Sequence of Dense Triangle-Free Graphs , 1998, Electron. J. Comb..

[12]  Niko Tratnik,et al.  Predicting melting points of hydrocarbons by the Graovac-Pisanski index , 2017, 1709.01832.

[13]  Niko Tratnik,et al.  The Graovac–Pisanski index of armchair tubulenes , 2017, Journal of Mathematical Chemistry.

[14]  N. Biggs Algebraic Graph Theory , 1974 .

[15]  Aleksandra Tepeh,et al.  On the Graovac-Pisanski index of a graph , 2019 .

[16]  Ali Reza Ashrafi,et al.  Distance Under Symmetry: (3,6)-Fullerenes , 2016 .

[17]  F. Koorepazan-Moftakhar,et al.  Combination of distance and symmetry in some molecular graphs , 2016, Appl. Math. Comput..

[18]  Aleksandra Tepeh,et al.  Trees with the maximal value of Graovac-Pisanski index , 2019, Appl. Math. Comput..

[19]  Aleksandra Tepeh,et al.  Unicyclic graphs with the maximal value of Graovac-Pisanski index , 2019, Ars Math. Contemp..

[20]  Ali Reza Ashrafi,et al.  Graovac–Pisanski index of fullerenes and fullerene–like molecules , 2016 .

[21]  M. Randic Novel molecular descriptor for structure—property studies , 1993 .

[22]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.