Maneuvering Target Tracking in the Presence of Glint using the

The problem of maneuvering target tracking in the presence of glint noise is addressed in this work. The main challenge in this problem stems from its nonlinearity and non-Gaussianity. A new estimator, named as nonlinear Gaussian mixture Kalman filter (NL-GMKF) is derived based on the minimum-mean-square error (MMSE) criterion and applied to the problem of maneuvering target tracking in the presence of glint. The tracking performance of the NL-GMKF is evaluated and compared with the interacting multiple modeling (IMM) implemented with extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF) and the Gaussian sum PF (GSPF). It is shown that the NL-GMKF outperforms these algorithms in several examples with maneuvering target and/or glint noise measurements.

[1]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[2]  Wen-Rong Wu,et al.  A nonlinear IMM algorithm for maneuvering target tracking , 1994 .

[3]  Joseph Tabrikian,et al.  Application of Gaussian Mixture Models for Blind Separation of Independent Sources , 2004, ICA.

[4]  David G. Stork,et al.  Pattern Classification , 1973 .

[5]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[6]  Huang Peikang,et al.  Analysis spectral-power-density of glint of radar-extended target , 2001, 2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559).

[7]  Petar M. Djuric,et al.  Gaussian sum particle filtering , 2003, IEEE Trans. Signal Process..

[8]  Y. Bar-Shalom Tracking and data association , 1988 .

[9]  Y. Bar-Shalom,et al.  IMM tracking of maneuvering targets in the presence of glint , 1998 .

[10]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[11]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[12]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[13]  W. Wu,et al.  Target racking with glint noise , 1993 .

[14]  D. Magill Optimal adaptive estimation of sampled stochastic processes , 1965 .

[15]  C. Masreliez Approximate non-Gaussian filtering with linear state and observation relations , 1975 .

[16]  Iven Mareels,et al.  Reducing the computational load of a Kalman filter , 1997 .

[17]  Mónica F. Bugallo,et al.  Performance Comparison of Gaussian-Based Filters Using Information Measures , 2007, IEEE Signal Processing Letters.

[18]  J. Tabrikian,et al.  MMSE-Based Filtering in Presence of Non-Gaussian System and Measurement Noise , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[19]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Douglas A. Reynolds,et al.  A Gaussian mixture modeling approach to text-independent speaker identification , 1992 .

[21]  Y. Bar-Shalom,et al.  Design of interacting multiple model algorithm for tracking in air traffic control systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[22]  G. Sandhu,et al.  A Real-Time Statistical Radar Target Model , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[23]  M. Mumford,et al.  A Statistical Glint/Radar Cross Section Target Model , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[25]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[26]  Yaakov Bar-Shalom,et al.  An interacting multiple model approach for target tracking with glint noise , 1995 .

[27]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[28]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[29]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[30]  J. Tabrikian,et al.  Optimal recursive filtering using gaussian mixture model , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[31]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[32]  James E. Lindsay,et al.  Angular Glint and the Moving, Rotating, Complex Radar Target , 1968, IEEE Transactions on Aerospace and Electronic Systems.

[33]  R. Martin,et al.  Robust bayesian estimation for the linear model and robustifying the Kalman filter , 1977 .

[34]  A. Farina,et al.  Tracking a ballistic target: comparison of several nonlinear filters , 2002 .

[35]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..

[36]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[37]  Mark R. Morelande,et al.  Target tracking through a coordinated turn , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[38]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[39]  M. Athans,et al.  State Estimation for Discrete Systems with Switching Parameters , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[40]  Lyudmila Mihaylova,et al.  Monte Carlo Algorithm for Maneuvering Target Tracking and Classification , 2004, International Conference on Computational Science.

[41]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[42]  Bor-Sen Chen,et al.  Novel extended Viterbi-based multiple-model algorithms for state estimation of discrete-time systems with Markov jump parameters , 2006, IEEE Transactions on Signal Processing.

[43]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[44]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[45]  N. Gordon,et al.  Optimal Estimation and Cramér-Rao Bounds for Partial Non-Gaussian State Space Models , 2001 .

[46]  Petar M. Djuric,et al.  Architectures for efficient implementation of particle filters , 2004 .

[47]  G. Hewer,et al.  Robust Preprocessing for Kalman Filtering of Glint Noise , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[48]  Jing Zhongliang,et al.  Target tracking in glint noise using a MCMC particle filter , 2005 .

[49]  Andrew R. Barron,et al.  Mixture Density Estimation , 1999, NIPS.

[50]  Changqing Wang,et al.  Angular Glint of Aircraft Formation and Its Applications , 2007, 2007 International Conference on Mechatronics and Automation.

[51]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[52]  R. Singer Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets , 1970, IEEE Transactions on Aerospace and Electronic Systems.