A Bibliography of Quantifier Elimination for Real Closed Fields
暂无分享,去创建一个
[1] George E. Collins,et al. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition: a synopsis , 1976, SIGS.
[2] Jeanne Ferrante,et al. A Decision Procedure for the First Order Theory of Real Addition with Order , 1975, SIAM J. Comput..
[3] G. E. Collins,et al. Quantifier Elimination for Real Closed Fields: A Guide to the Literature , 1983 .
[4] H. R. Wüthrich,et al. Ein Entscheidungsverfahren für die Theorie der reell- abgeschlossenen Körper , 1976, Komplexität von Entscheidungsproblemen 1976.
[5] Leonard Berman,et al. The Complexity of Logical Theories , 1980, Theor. Comput. Sci..
[6] Dennis S. Arnon,et al. Geometric Reasoning with Logic and Algebra , 1988, Artif. Intell..
[7] Chandrajit L. Bajaj,et al. Compliant motion planning with geometric models , 1987, SCG '87.
[8] Dennis S. Arnon. A Cluster-Based Cylindrical Algebraic Decomposition Algorithm , 1988, J. Symb. Comput..
[9] C. Smoryński. Skolem’s solution to a problem of frobenius , 1981 .
[10] Scott McCallum,et al. A Polynomial-Time Algorithm for the Topological Type of a Real Algebraic Curve , 1984, J. Symb. Comput..
[11] Scott McCallum,et al. An Improved Projection Operation for Cylindrical Algebraic Decomposition of Three-Dimensional Space , 1988, J. Symb. Comput..
[12] A. Macintyre,et al. Elimination of Quantifiers in Algebraic Structures , 1983 .
[13] G. Wilson,et al. Hilbert's sixteenth problem , 1978 .
[14] Nachum Dershowitz,et al. A Note on Simplification Orderings , 1979, Inf. Process. Lett..
[15] Eduardo D. Sontag,et al. Real Addition and the Polynomial Hierarchy , 1985, Inf. Process. Lett..
[16] John H. Reif,et al. The complexity of elementary algebra and geometry , 1984, STOC '84.
[17] E. Becker. On the real spectrum of a ring and its application to semialgebraic geometry , 1986 .
[18] George E. Collins,et al. Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..
[19] J. Davenport. A "Piano Movers" Problem. , 1986 .
[20] Sabine Stifter,et al. Automated geometry theorem proving using Buchberger's algorithm , 1986, SYMSAC '86.
[21] W. Böge,et al. Quantifier Elimination for Real Closed Fields , 1985, AAECC.
[22] Charles N. Delzell. A continuous, constructive solution to Hilbert's 17th problem , 1984 .
[23] Dennis S. Arnon,et al. Topologically reliable display of algebraic curves , 1983, SIGGRAPH.
[24] Dennis S. Arnon,et al. A cellular decomposition algorithm for semi-algebraic sets , 1979, EUROSAM.
[25] Tsit Yuen Lam,et al. An introduction to real algebra , 1984 .
[26] H. Whitney. Elementary Structure of Real Algebraic Varieties , 1957 .
[27] Micha Sharir,et al. On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..
[28] Dima Grigoriev,et al. Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..
[29] Bernard Chazelle,et al. Fast Searching in a Real Algebraic Manifold with Applications to Geometric Complexity , 1985, TAPSOFT, Vol.1.
[30] B. E. Meserve. Decision Methods for Elementary Algebra , 1955 .
[31] M. A. Dickmann,et al. Applications of model theory to real algebraic geometry , 1985 .
[32] James H. Davenport. A :20piano movers' ' , 1986, SIGS.
[33] Stefan Arnborg,et al. Algebraic Decomposition of Regular Curves , 1988, J. Symb. Comput..
[34] Volker Weispfenning,et al. The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.
[35] Michel Coste,et al. Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..
[36] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[37] D A Gudkov,et al. THE TOPOLOGY OF REAL PROJECTIVE ALGEBRAIC VARIETIES , 1974 .
[38] B. L. Waerden,et al. Das Problem der dreizehn Kugeln , 1952 .
[39] George E. Collins. The Tarski decision procedure , 1956, ACM '56.
[40] Jean-Jacques Risler. Some Aspects of Complexity in Real Algebraic Geometry , 1988, J. Symb. Comput..
[41] Gregory W. Brumfiel,et al. Partially Ordered Rings and Semi-Algebraic Geometry , 1980 .
[42] George E. Collins. Factorization in Cylindrical Algebraic Decomposition , 1982, EUROCAM.
[43] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[44] Chee-Keng Yap,et al. Algebraic cell decomposition in NC , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[45] Joos Heintz,et al. An efficient quantifier elimination algorithm for algebraically closed fields of any characteristic , 1975, SIGS.
[46] George E. Collins,et al. An Adjacency Algorithm for Cylindrical Algebraic Decompositions of Three-Dimensional Space , 1988, J. Symb. Comput..
[47] Daniel Lazard,et al. Quantifier Elimination: Optimal Solution for Two Classical Examples , 1988, J. Symb. Comput..
[48] A. Tarski. What is Elementary Geometry , 1959 .
[49] A. Seidenberg. A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .
[50] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[51] John F. Canny,et al. A new algebraic method for robot motion planning and real geometry , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[52] D. Grigor'ev. Complexity of deciding Tarski algebra , 1988 .
[53] Micha Sharir,et al. A Survey of Motion Planning and Related Geometric Algorithms , 1988, Artificial Intelligence.
[54] J. Schwartz,et al. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .
[55] George E. Collins,et al. Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..
[56] Paul J. Cohen,et al. Decision procedures for real and p‐adic fields , 1969 .
[57] Maurice Mignotte,et al. On Mechanical Quantifier Elimination for Elementary Algebra and Geometry , 1988, J. Symb. Comput..
[58] Scott McCallum,et al. Cylindrical Algebraic Decomposition by Quantifier Elimination , 1982, EUROCAM.
[59] David Prill. On Approximations and Incidence in Cylindrical Algebraic Decompositions , 1986, SIAM J. Comput..
[60] Deepak Kapur,et al. A Refutational Approach to Geometry Theorem Proving , 1988, Artif. Intell..
[61] D. Dubois. A nullstellensatz for ordered fields , 1970 .
[62] P. J. Kahn,et al. Counting types of rigid frameworks , 1979 .
[63] Deepak Kapur,et al. Geometry theorem proving using Hilbert's Nullstellensatz , 1986, SYMSAC '86.
[64] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..