Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric

Atomic layer deposition (ALD) Al2O3 is a high-quality gate dielectric on III-V compound semiconductor with low defect density, low gate leakage, and high thermal stability. The high-quality of Al2O3∕InGaAs interface surviving from high temperature annealing is verified by excellent capacitance-voltage (CV) curves showing sharp transition from depletion to accumulation with “zero” hysteresis, 1% frequency dispersion per decade at accumulation capacitance, and strong inversion at split CV measurement. An enhancement-mode n-channel InGaAs metal-oxide-semiconductor field-effect-transistor is also demonstrated by forming true inversion channel at Al2O3∕InGaAs interface.

[1]  T. Mimura,et al.  Status of the GaAs metal—oxide—semiconductor technology , 1980, IEEE Transactions on Electron Devices.

[2]  C. Wilmsen Oxide/III-V Compound Semiconductor Interfaces , 1985 .

[3]  Carl W. Wilmsen,et al.  Physics and chemistry of III-V compound semiconductor interfaces , 1985 .

[4]  E. Yablonovitch,et al.  Effects of passivating ionic films on the photoluminescence properties of GaAs , 1987 .

[5]  M. Akazawa,et al.  Control of GaAs and InGaAs Insulator-Semiconductor and Metal-Semiconductor Interfaces by Ultrathin Molecular Beam Epitaxy Si Layers , 1991 .

[6]  Kirchner,et al.  Different Fermi-level pinning behavior on n- and p-type GaAs(001). , 1993, Physical review. B, Condensed matter.

[7]  H. Morkoç,et al.  Si3N4/Si/Ge/GaAs metal‐insulator‐semiconductor structures grown by insitu chemical vapor deposition , 1994 .

[8]  Yan,et al.  In situ study of Fermi-level pinning on n- and p-type GaAs (001) grown by molecular-beam epitaxy using photoreflectance. , 1995, Physical review. B, Condensed matter.

[9]  M. Passlack,et al.  Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy , 1996 .

[10]  J. Kwo,et al.  Demonstration of enhancement-mode p- and n-channel GaAs MOSFETS with Ga2O3(Gd2O3) As gate oxide , 1997 .

[11]  Peide D. Ye,et al.  Impact of metal/oxide interface on DC and RF performance of depletion-mode GaAs MOSFET employing MBE grown Ga2O3(Gd2O3) as gate dielectric , 2003 .

[12]  Peide D. Ye,et al.  GaAs metal–oxide–semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition , 2003 .

[13]  J. Kwo,et al.  GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition , 2003, IEEE Electron Device Letters.

[14]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[15]  H. Kim,et al.  Atomic layer deposition of high-/spl kappa/ dielectric for germanium MOS applications - substrate , 2004, IEEE Electron Device Letters.

[16]  J. Kwo,et al.  Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition , 2004 .

[17]  T.P. Ma,et al.  A new method to extract EOT of ultrathin gate dielectric with high leakage current , 2004, IEEE Electron Device Letters.

[18]  Peide D. Ye,et al.  GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric , 2005 .

[19]  Peide D. Ye,et al.  Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs , 2005 .

[20]  Y. J. Lee,et al.  Surface passivation of III-V compound semiconductors using atomic-layer-deposition grown Al2O3 , 2005 .

[21]  M. Yakimov,et al.  Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer , 2006 .