Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnèli phases

The thermoelectric properties of Magneli phase titanium oxides TinO2n−1 (n=2,3,…) have been investigated, paying special attention to how the thermoelectric performance can be altered by changing the microstructure. Dense polycrystalline specimens with nominal composition of TiO2−x (x=0.05, 0.10, 0.15, and 0.20) prepared by conventional hot-pressing are all identified to be one of the Magneli phases, in which crystallographic shear planes are regularly introduced according to the oxygen deficiency. Electrical conduction is n-type for all specimens and the carrier concentration increases with the increase in the oxygen deficiency. The values of lattice thermal conductivity, on the other hand, decrease with the increase in the oxygen deficiency, which can be attributed to phonon scattering at the crystallographic shear plane. The largest value of thermoelectric figure of merit Z, 1.6×10−4 K−1 was obtained at 773 K for the hot-pressed specimen of TiO1.90.

[1]  J. S. Arthur The Specific Heats of MgO, TiO2, and ZrO2 at High Temperatures , 1950 .

[2]  P. Strobel,et al.  Structural chemistry of the Magnéli phases TinO2n−1, 4 ≤ n ≤ 9: II. Refinements and structural discussion , 1982 .

[3]  A. Yamamoto,et al.  Thermoelectric Properties of Y-Doped Polycrystalline SrTiO3 , 2004 .

[4]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[5]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .

[6]  D. M. Rowe,et al.  The effect of phonon‐grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine‐grained, hot‐pressed silicon germanium alloy , 1981 .

[7]  J. S. Anderson,et al.  Electron microscopy of solid solutions and crystallographic shear structures. II. Fe2O3TiO2 and Ga2O3TiO2 systems , 1972 .

[8]  J. S. Anderson,et al.  The system TiO2Cr2O3: Electron microscopy of solid solutions and crystallographic shear structures , 1972 .

[9]  W. R. Thurber,et al.  Thermal Conductivity and Thermoelectric Power of Rutile (TiO 2 ) , 1965 .

[10]  R. F. Bartholomew,et al.  Electrical Properties of Some Titanium Oxides , 1969 .

[11]  Terry M. Tritt,et al.  Holey and Unholey Semiconductors , 1999, Science.

[12]  L. Tewordt,et al.  Theory of thermal conductivity of the lattice for high-Tc superconductors , 1989 .

[13]  Gerald D. Mahan,et al.  Wiedemann–Franz law at boundaries , 1999 .

[14]  J. S. Anderson,et al.  On the possible role of dislocations in generating ordered and disordered shear structures , 1967 .

[15]  L. Mulay,et al.  Magnetic susceptibility and EPR spectra of titanium oxides: Correlation of magnetic parameters with transport properties and composition , 1975 .

[16]  H. Ohta,et al.  Thermoelectric Properties of Homologous Compounds in the ZnO–In2O3 System , 1996 .

[17]  S. Andersson,et al.  PHASE ANALYSIS STUDIES ON THE TITANIUM-OXYGEN SYSTEM , 1957 .

[18]  S. Andersson,et al.  A Homologous Series of Mixed Titanium Chromium Oxides Ti(n-2)Cr2O(2n-1) Isomorphous with the Series Ti(n)O(2n-1) and V(n)O(2n-1). , 1959 .

[19]  J. C. Jamieson,et al.  Shock-Wave Compression and X-Ray Studies of Titanium Dioxide , 1967, Science.

[20]  S. Rundqvist,et al.  The Crystal Structure of Ti5O9. , 1960 .

[21]  L. Bursill Crystallographic shear in molybdenum trioxide , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  B. Hyde,et al.  Crystal structures in the {l\overline{3}2} CS family of higher titanium oxides TinO2n−1 , 1971 .