Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales

[1]  D. Hammond,et al.  Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential , 2006 .

[2]  D. Sumner,et al.  Sequence stratigraphic development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa , 2006 .

[3]  Juan Pablo Lacassie,et al.  Stratigraphic and geochemical framework of the Agouron drill cores, Transvaal Supergroup (Neoarchean–Paleoproterozoic, South Africa) , 2006 .

[4]  W. Berelson,et al.  Molybdenum isotope signatures in continental margin marine sediments , 2006 .

[5]  C. Klein Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins , 2005 .

[6]  A. Bekker,et al.  Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen , 2005 .

[7]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[8]  R. Kopp,et al.  The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Aharon Redox stratification and anoxia of the early Precambrian oceans: Implications for carbon isotope excursions and oxidation events , 2005 .

[10]  M. Böttcher,et al.  Sedimentary Mo isotope record across the Holocene fresh–brackish water transition of the Black Sea , 2005 .

[11]  J. Tossell Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution , 2005 .

[12]  T. Lyons,et al.  Organic carbon burial rate and the molybdenum proxy: Theoretical framework and application to Cenomanian-Turonian oceanic anoxic event 2 , 2005 .

[13]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[14]  J. Kramers,et al.  PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth , 2005 .

[15]  H. Frimmel Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa , 2005 .

[16]  H. Strauss,et al.  Emergence of an aerobic biosphere during the Archean-Proterozoic transition: Challenges of future research , 2005 .

[17]  J. Grotzinger,et al.  Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand‐Malmani Platform, South Africa , 2004 .

[18]  T. Algeo Can marine anoxic events draw down the trace element inventory of seawater , 2004 .

[19]  A. Bekker,et al.  Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen , 2004 .

[20]  T. Meisel,et al.  Platinum‐Group Element and Rhenium Concentrations in Low Abundance Reference Materials , 2004 .

[21]  M. Quinby-Hunt,et al.  Organic carbon proxies in black shales: molybdenum , 2004 .

[22]  A. Anbar,et al.  Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans , 2004, Science.

[23]  M. Humayun,et al.  Platinum group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario, Canada , 2004 .

[24]  G. Helz,et al.  Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides , 2004 .

[25]  A. Anbar,et al.  Molybdenum isotope fractionation during adsorption by manganese oxides , 2004 .

[26]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[27]  S. Barnes,et al.  The Concentration of the Platinum-Group Elements in South African Komatiites: Implications for Mantle Sources, Melting Regime and PGE Fractionation during Crystallization , 2003 .

[28]  T. Meisel,et al.  A simple procedure for the determination of platinum group elements and rhenium (Ru, Rh, Pd, Re, Os, Ir and Pt) using ID-ICP-MS with an inexpensive on-line matrix separation in geological and environmental materials , 2003 .

[29]  J. Kramers,et al.  Molybdenum isotope records as a potential new proxy for paleoceanography , 2003 .

[30]  T. Lyons,et al.  Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela , 2003 .

[31]  N. Beukes,et al.  Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton , 2003 .

[32]  C. G. Wheat,et al.  Oceanic molybdenum isotope fractionation: Diagenesis and hydrothermal ridge‐flank alteration , 2002 .

[33]  A. Pierson‐Wickmann,et al.  Behavior of Re and Os during low-temperature alteration: Results from Himalayan soils and altered black shales , 2002 .

[34]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[35]  A. Anbar,et al.  Natural mass-dependent variations in the isotopic composition of molybdenum , 2001 .

[36]  James F. Kasting,et al.  The Rise of Atmospheric Oxygen , 2001, Science.

[37]  K. Zahnle,et al.  Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth , 2001, Science.

[38]  B. Kamber,et al.  The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history , 2001 .

[39]  J. Kramers,et al.  Determination of molybdenum isotope fractionation by double‐spike multicollector inductively coupled plasma mass spectrometry , 2001 .

[40]  R. Walker,et al.  Osmium isotopic compositions of mantle xenoliths: A global perspective , 2001 .

[41]  N. Grassineau,et al.  Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million–year–old rocks of the Belingwe Belt, Zimbabwe , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  J. Kasting,et al.  Rise of atmospheric oxygen and the “upside‐down” Archean mantle , 2001 .

[43]  B. Peucker‐Ehrenbrink,et al.  The marine osmium isotope record , 2000 .

[44]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[45]  B. Erickson,et al.  Molybdenum(VI) speciation in sulfidic waters:. Stability and lability of thiomolybdates , 2000 .

[46]  J. Kirschvink,et al.  Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Romer,et al.  Pb, O, and C isotopes in silicified Mooidraai dolomite (Transvaal Supergroup, South Africa): implications for the composition of Paleoproterozoic seawater and `dating' the increase of oxygen in the Precambrian atmosphere , 1999 .

[48]  R. Buick,et al.  Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia , 1999 .

[49]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[50]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[51]  S. Emerson,et al.  The geochemistry of redox sensitive trace metals in sediments , 1999 .

[52]  Fleet Detrital pyrite in Witwatersrand gold reefs: X‐ray diffraction evidence and implications for atmospheric evolution , 1998 .

[53]  G. Wasserburg,et al.  The concentration and isotopic composition of osmium in the oceans , 1997 .

[54]  H. Tsikos,et al.  Petrography and geochemistry of the Paleoproterozoic Hotazel Iron-Formation, Kalahari manganese field, South Africa; implications for Precambrian manganese metallogenesis , 1997 .

[55]  J. Gutzmer,et al.  The manganese adventure: The South African manganese fields , 1997 .

[56]  S. Calvert,et al.  Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition , 1996 .

[57]  H. Ohmoto Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota , 1996, Geology.

[58]  G. Wasserburg,et al.  Iridium in Natural Waters , 1996, Science.

[59]  A. Kotov,et al.  The stratigraphical position of the Buffelsfontein Group based on field relationships and chemical and geochronological data , 1995 .

[60]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[61]  J. Martini,et al.  Zircon Pb-evaporation age determinations for the Oak Tree Formation, Chuniespoort Group, Transvaal Sequence; implications for Transvaal-Griqualand West basin correlations , 1995 .

[62]  E. Boyle,et al.  Rhenium in the Black Sea: comparison with molybdenum and uranium , 1995 .

[63]  W. McDonough,et al.  The composition of the Earth , 1995 .

[64]  K. H. Wedepohl,et al.  The Composition of the Continental Crust , 1995 .

[65]  J. Kasting,et al.  New Constraints on Precambrian Ocean Composition , 1993, The Journal of Geology.

[66]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[67]  Joseph L. Kirschvink,et al.  Late Proterozoic low-latitude global glaciation: the snowball Earth , 1992 .

[68]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[69]  E. Boyle,et al.  Post-depositional mobility of platinum, iridium and rhenium in marine sediments , 1992, Nature.

[70]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[71]  K. Turekian,et al.  The geochemistry of rhenium and osmium in recent sediments from the Black Sea , 1991 .

[72]  N. Beukes,et al.  A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. , 1990, American journal of science.

[73]  J. J. Cruywagen,et al.  Spectrophotometric determination of the thermodynamic parameters for the first two protonation reactions of molybdate: An advanced undergraduate laboratory experiment , 1989 .

[74]  N. Beukes Facies relations, depositional environments and diagenesis in a major early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, Southern Africa , 1987 .

[75]  N. Beukes Sedimentology of the Kuruman and Griquatown Iron-formations, Transvaal Supergroup, Griqualand West, South Africa , 1984 .

[76]  R. Wolf,et al.  Variations of the Os/Ir ratio in terrestrial rocks and minerals , 1984 .

[77]  H P Klein,et al.  Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae , 1983, Journal of bacteriology.